Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherently driving a single quantum two-level system with dichromatic laser pulses


The excitation of individual two-level quantum systems using an electromagnetic field is an elementary tool of quantum optics, with widespread applications across quantum technologies. The efficient excitation of a single two-level system usually requires the driving field to be at the same frequency as the transition between the two quantum levels. However, in solid-state implementations, the scattered laser light can dominate over the single photons emitted by the two-level system, imposing a challenge for single-photon sources. Here, we propose a background-free method for the coherent excitation and control of a two-level quantum system using a phase-locked dichromatic electromagnetic field with no spectral overlap with the optical transition. We demonstrate this method experimentally by stimulating single-photon emission from a single quantum dot embedded in a micropillar, reaching single-photon purity of 0.988(1) and indistinguishability of 0.962(6). The phase-coherent nature of our two-colour excitation scheme is demonstrated by the dependence of the resonance fluorescence intensity on the relative phase between the two pulses. Our two-colour excitation method represents an additional and useful tool for the study of atom–photon interaction, and the generation of spectrally isolated indistinguishable single photons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coherent driving of a single two-level system with dichromatic pulses.
Fig. 2: Generation of dichromatic pulses using a 4f optical system.
Fig. 3: Single-photon intensity as a function of the driving strength.
Fig. 4: Phase-dependent resonance fluorescence under dichromatic driving.
Fig. 5: Characterization of the single-photon source under two-colour excitation.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. Rabi, I. I., Millman, S. & Kusch, P. The molecular beam resonance method for measuring nuclear magnetic moments. The magnetic moments of 3Li6, 3Li7 and 9F19. Phys. Rev. 55, 526–535 (1939).

    Article  ADS  Google Scholar 

  2. Ramsey, N. F. A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–699 (1950).

    Article  ADS  Google Scholar 

  3. Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

    Article  ADS  Google Scholar 

  4. Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969).

    Article  ADS  Google Scholar 

  5. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).

    Article  ADS  Google Scholar 

  6. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  7. Bonadeo, N. H. et al. Coherent optical control of the quantum state of a single quantum dot. Science 282, 1473–1476 (1998).

    Article  Google Scholar 

  8. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  9. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  10. Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

    Article  ADS  Google Scholar 

  11. Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    Article  ADS  Google Scholar 

  12. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–214 (2002).

    Article  ADS  Google Scholar 

  13. Stievater, T. H. et al. Rabi oscillations of excitons in single quantum dots. Phys. Rev. Lett. 87, 133603 (2001).

    Article  ADS  Google Scholar 

  14. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  15. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  16. Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    Article  ADS  Google Scholar 

  17. Vamivakas, A. N., Zhao, Y., Lu, C.-Y. & Atature, M. Spin-resolved quantum-dot resonance fluorescence. Nat. Phys. 5, 198–202 (2009).

    Article  Google Scholar 

  18. He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

    Article  ADS  Google Scholar 

  19. Buckley, S., Rivoire, K. & Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012).

    Article  ADS  Google Scholar 

  20. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  ADS  Google Scholar 

  21. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  ADS  Google Scholar 

  22. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  ADS  Google Scholar 

  23. Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

    Article  ADS  Google Scholar 

  24. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. 43rd Annu. ACM Symp. Theory of Computing 333–342 (ACM, 2011).

  25. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  26. Müller, M. et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

    Article  ADS  Google Scholar 

  27. Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

    Article  ADS  Google Scholar 

  28. Hanschke, L. et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inf. 4, 43 (2018).

    Article  ADS  Google Scholar 

  29. Huber, T. et al. Measurement and modification of biexciton–exciton time correlations. Opt. Express 21, 9890–9898 (2013).

    Article  ADS  Google Scholar 

  30. Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

    Article  ADS  Google Scholar 

  31. Htoon, H. et al. Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots. Phys. Rev. Lett. 88, 087401 (2002).

    Article  ADS  Google Scholar 

  32. Grange, T. et al. Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics. Phys. Rev. Lett. 118, 253602 (2017).

    Article  ADS  Google Scholar 

  33. Iles-Smith, J. et al. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat. Photon. 11, 521–526 (2017).

    Article  Google Scholar 

  34. Glässl, M., Barth, A. M. & Axt, V. M. Proposed robust and high-fidelity preparation of excitons and biexcitons in semiconductor quantum dots making active use of phonons. Phys. Rev. Lett. 110, 147401 (2013).

    Article  ADS  Google Scholar 

  35. Quilter, J. H. et al. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation. Phys. Rev. Lett. 114, 137401 (2015).

    Article  ADS  Google Scholar 

  36. Förstner, J. et al. Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots. Phys. Rev. Lett. 91, 127401 (2003).

    Article  ADS  Google Scholar 

  37. Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  38. Humphreys, P. C. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    Article  ADS  Google Scholar 

  39. Ates, S. et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).

    Article  ADS  Google Scholar 

  40. He, Y.-M. et al. Polarized indistinguishable single photons from a quantum dot in an elliptical micropillar. Preprint at (2018).

Download references


The National Natural Science Foundation of China, the Chinese Academy of Science, Anhui Initiative in Quantum Information Technologies, the Science and Technology Commission of Shanghai Municipality, the National Fundamental Research Program and the State of Bavaria supported this work. M.A. is supported by an ERC Consolidator Grant PHOENICS (no. 617985), and the EPSRC Quantum Technology Hub NQIT (EP/M013243/1). C.S. acknowledges support by the DFG within the project SCHN1376 5-1.

Author information

Authors and Affiliations



C.-Y.L. and J.-W.P. conceived the idea and designed the experiment. C.S. and S.H. grew the quantum dot samples. Y.-M.H., H.W., C.W., X.D., J.Q., Z.-C.D., S.C., J.-P.L., R.-Z.L. and C.-Y.L. performed the experiment. C.W., M.-C.C., M.A. and C.-Y.L. performed theoretical modelling and analysed the experimental data. C.-Y.L. wrote the paper with input from all authors. C.-Y.L. and J.-W.P. supervised the whole project.

Corresponding authors

Correspondence to Chao-Yang Lu or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YM., Wang, H., Wang, C. et al. Coherently driving a single quantum two-level system with dichromatic laser pulses. Nat. Phys. 15, 941–946 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing