Magnetic resonance imaging of single atoms on a surface

Abstract

Magnetic resonance imaging (MRI) revolutionized diagnostic medicine and biomedical research by allowing non-invasive access to spin ensembles1. To enhance MRI resolution to the nanometre scale, new approaches2,3,4 including scanning probe methods5,6,7,8 have been used in recent years, which culminated in the detection of individual spins5,6. This allowed for the visualization of organic samples9 and magnetic structures10,11, as well as identifying the location of electron7,8 and nuclear spins12. Here, we demonstrate the MRI of individual atoms on a surface. The set-up, implemented in a cryogenic scanning tunnelling microscope, uses single-atom electron spin resonance13,14 to achieve subångström resolution, exceeding the spatial resolution of previous MRI experiments5,6,7,8 by one to two orders of magnitude. We find that MRI scans of different atomic species and with different probe tips lead to unique signatures in the resonance images. These signatures reveal the magnetic interactions between the tip and the atom, in particular magnetic dipolar and exchange interaction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: MRI in an STM.
Fig. 2: Mapping different magnetic interactions between tip and surface atom.
Fig. 3: MRI of different atomic species.
Fig. 4: Mapping the 3D magnetic interaction potential.

Data availability

Data are available from P.W. (willke.philip@qns.science) upon reasonable request.

References

  1. 1.

    Mansfield, P. Snapshot magnetic resonance imaging (Nobel lecture). Angew. Chem. Int. Ed. 43, 5456–5464 (2004).

    Article  Google Scholar 

  2. 2.

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    ADS  Article  Google Scholar 

  3. 3.

    Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Rugar, D. et al. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    ADS  Article  Google Scholar 

  6. 6.

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    Grinolds, M. S. et al. Quantum control of proximal spins using nanoscale magnetic resonance imaging. Nat. Phys. 7, 687–692 (2011).

    Article  Google Scholar 

  8. 8.

    Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Soc. USA 106, 1313–1317 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen–vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Willke, P. et al. Probing quantum coherence in single-atom electron spin resonance. Sci. Adv. 4, eaaq1543 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Cai, J., Retzker, A., Jelezko, F. & Plenio, M. B. A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 9, 168–173 (2013).

    Article  Google Scholar 

  16. 16.

    Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Mamin, H. J., Poggio, M., Degen, C. L. & Rugar, D. Nuclear magnetic resonance imaging with 90-nm resolution. Nat. Nanotechnol. 2, 301–306 (2007).

    ADS  Article  Google Scholar 

  18. 18.

    Häberle, T., Schmid-Lorch, D., Reinhard, F. & Wrachtrup, J. Nanoscale nuclear magnetic imaging with chemical contrast. Nat. Nanotechnol. 10, 125–128 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotechnol. 9, 279–284 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9, 215–219 (2013).

    Article  Google Scholar 

  21. 21.

    Wagner, C. et al. Scanning quantum dot microscopy. Phys. Rev. Lett. 115, 026101 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Ormaza, M. et al. Efficient spin-flip excitation of a nickelocene molecule. Nano Lett. 17, 1877–1882 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Ast, C. R. et al. Sensing the quantum limit in scanning tunnelling spectroscopy. Nat. Commun. 7, 13009 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Yang, K. et al. Engineering the eigenstates of coupled spin-1/2 atoms on a surface. Phys. Rev. Lett. 119, 227206 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Paul, W., Baumann, S., Lutz, C. P. & Heinrich, A. J. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM. Rev. Sci. Instrum. 87, 074703 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Paul, W. et al. Control of the millisecond spin lifetime of an electrically probed atom. Nat. Phys. 13, 403–407 (2017).

    Article  Google Scholar 

  27. 27.

    Bae, Y. et al. Enhanced quantum coherence in exchange-coupled spins via singlet-triplet transitions. Sci. Adv. 4, eaau4159 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Yan, S., Choi, D. J., Burgess, J. A., Rolf-Pissarczyk, S. & Loth, S. Control of quantum magnets by atomic exchange bias. Nat. Nanotechnol. 10, 40–45 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Schmidt, R. et al. Quantitative measurement of the magnetic exchange interaction across a vacuum gap. Phys. Rev. Lett. 106, 257202 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Lazo, C. & Heinze, S. First-principles study of magnetic exchange force microscopy with ferromagnetic and antiferromagnetic tips. Phys. Rev. B 84, 144428 (2011).

    ADS  Article  Google Scholar 

  31. 31.

    Otte, A. F. et al. Spin excitations of a Kondo-screened atom coupled to a second magnetic atom. Phys. Rev. Lett. 103, 107203 (2009).

    ADS  Article  Google Scholar 

  32. 32.

    Choi, T. et al. Atomic-scale sensing of the magnetic dipolar field from individually positioned atoms on a surface. Nat. Nanotechnol. 12, 420–424 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Willke, P. et al. Hyperfine interaction of individual atoms on a surface. Science 362, 336–339 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Hermenau, J. et al. A gateway towards non-collinear spin processing using three-atom magnets with strong substrate coupling. Nat. Commun. 8, 642 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Brinker, S., Dias, M. D. S. & Lounis, S. Interatomic orbital magnetism: the case of 3d adatoms deposited on the Pt(111) surface. Phys. Rev. B 98, 094428 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank B. Melior for expert technical assistance. We gratefully acknowledge financial support from the Office of Naval Research. P.W., Y.B. and A.J.H. acknowledge support from the Institute for Basic Science under grant IBS-R027-D1. P.W. acknowledges support from the Alexander von Humboldt Foundation.

Author information

Affiliations

Authors

Contributions

P.W. and C.P.L. conceived the experiment. P.W., K.Y. and Y.B. carried out the measurements. P.W. analysed the data and wrote the manuscript. C.P.L and A.J.H. supervised the project. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Andreas J. Heinrich or Christopher P. Lutz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional technical details, Supplementary Figs. 1–18 and Supplementary refs. 1–35.

Supplementary Video 1

Supplementary video for Fig. 1e.

Supplementary Video 2

Supplementary video for Fig. 2a.

Supplementary Video 3

Supplementary video for Fig. 2b.

Supplementary Video 4

Supplementary video for Fig. 2c.

Supplementary Video 5

Supplementary video for Fig. 2d.

Supplementary Video 6

Supplementary video for Fig. 3.

Supplementary Video 7

Supplementary video for Supplementary Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Willke, P., Yang, K., Bae, Y. et al. Magnetic resonance imaging of single atoms on a surface. Nat. Phys. 15, 1005–1010 (2019). https://doi.org/10.1038/s41567-019-0573-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing