Abstract
Magnetic resonance imaging (MRI) revolutionized diagnostic medicine and biomedical research by allowing non-invasive access to spin ensembles1. To enhance MRI resolution to the nanometre scale, new approaches2,3,4 including scanning probe methods5,6,7,8 have been used in recent years, which culminated in the detection of individual spins5,6. This allowed for the visualization of organic samples9 and magnetic structures10,11, as well as identifying the location of electron7,8 and nuclear spins12. Here, we demonstrate the MRI of individual atoms on a surface. The set-up, implemented in a cryogenic scanning tunnelling microscope, uses single-atom electron spin resonance13,14 to achieve subångström resolution, exceeding the spatial resolution of previous MRI experiments5,6,7,8 by one to two orders of magnitude. We find that MRI scans of different atomic species and with different probe tips lead to unique signatures in the resonance images. These signatures reveal the magnetic interactions between the tip and the atom, in particular magnetic dipolar and exchange interaction.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Electric control of spin transitions at the atomic scale
Nature Communications Open Access 19 October 2023
-
Coherent optical two-photon resonance tomographic imaging in three dimensions
Communications Physics Open Access 04 July 2023
-
Enhanced conductance response in radio frequency scanning tunnelling microscopy
Scientific Reports Open Access 13 April 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
Data are available from P.W. (willke.philip@qns.science) upon reasonable request.
References
Mansfield, P. Snapshot magnetic resonance imaging (Nobel lecture). Angew. Chem. Int. Ed. 43, 5456–5464 (2004).
Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).
Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).
Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).
Rugar, D. et al. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).
Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).
Grinolds, M. S. et al. Quantum control of proximal spins using nanoscale magnetic resonance imaging. Nat. Phys. 7, 687–692 (2011).
Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).
Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Soc. USA 106, 1313–1317 (2009).
Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).
Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen–vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).
Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2015).
Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).
Willke, P. et al. Probing quantum coherence in single-atom electron spin resonance. Sci. Adv. 4, eaaq1543 (2018).
Cai, J., Retzker, A., Jelezko, F. & Plenio, M. B. A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 9, 168–173 (2013).
Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).
Mamin, H. J., Poggio, M., Degen, C. L. & Rugar, D. Nuclear magnetic resonance imaging with 90-nm resolution. Nat. Nanotechnol. 2, 301–306 (2007).
Häberle, T., Schmid-Lorch, D., Reinhard, F. & Wrachtrup, J. Nanoscale nuclear magnetic imaging with chemical contrast. Nat. Nanotechnol. 10, 125–128 (2015).
Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotechnol. 9, 279–284 (2014).
Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9, 215–219 (2013).
Wagner, C. et al. Scanning quantum dot microscopy. Phys. Rev. Lett. 115, 026101 (2015).
Ormaza, M. et al. Efficient spin-flip excitation of a nickelocene molecule. Nano Lett. 17, 1877–1882 (2017).
Ast, C. R. et al. Sensing the quantum limit in scanning tunnelling spectroscopy. Nat. Commun. 7, 13009 (2016).
Yang, K. et al. Engineering the eigenstates of coupled spin-1/2 atoms on a surface. Phys. Rev. Lett. 119, 227206 (2017).
Paul, W., Baumann, S., Lutz, C. P. & Heinrich, A. J. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM. Rev. Sci. Instrum. 87, 074703 (2016).
Paul, W. et al. Control of the millisecond spin lifetime of an electrically probed atom. Nat. Phys. 13, 403–407 (2017).
Bae, Y. et al. Enhanced quantum coherence in exchange-coupled spins via singlet-triplet transitions. Sci. Adv. 4, eaau4159 (2018).
Yan, S., Choi, D. J., Burgess, J. A., Rolf-Pissarczyk, S. & Loth, S. Control of quantum magnets by atomic exchange bias. Nat. Nanotechnol. 10, 40–45 (2015).
Schmidt, R. et al. Quantitative measurement of the magnetic exchange interaction across a vacuum gap. Phys. Rev. Lett. 106, 257202 (2011).
Lazo, C. & Heinze, S. First-principles study of magnetic exchange force microscopy with ferromagnetic and antiferromagnetic tips. Phys. Rev. B 84, 144428 (2011).
Otte, A. F. et al. Spin excitations of a Kondo-screened atom coupled to a second magnetic atom. Phys. Rev. Lett. 103, 107203 (2009).
Choi, T. et al. Atomic-scale sensing of the magnetic dipolar field from individually positioned atoms on a surface. Nat. Nanotechnol. 12, 420–424 (2017).
Willke, P. et al. Hyperfine interaction of individual atoms on a surface. Science 362, 336–339 (2018).
Hermenau, J. et al. A gateway towards non-collinear spin processing using three-atom magnets with strong substrate coupling. Nat. Commun. 8, 642 (2017).
Brinker, S., Dias, M. D. S. & Lounis, S. Interatomic orbital magnetism: the case of 3d adatoms deposited on the Pt(111) surface. Phys. Rev. B 98, 094428 (2018).
Acknowledgements
We thank B. Melior for expert technical assistance. We gratefully acknowledge financial support from the Office of Naval Research. P.W., Y.B. and A.J.H. acknowledge support from the Institute for Basic Science under grant IBS-R027-D1. P.W. acknowledges support from the Alexander von Humboldt Foundation.
Author information
Authors and Affiliations
Contributions
P.W. and C.P.L. conceived the experiment. P.W., K.Y. and Y.B. carried out the measurements. P.W. analysed the data and wrote the manuscript. C.P.L and A.J.H. supervised the project. All authors discussed the results and contributed to the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Additional technical details, Supplementary Figs. 1–18 and Supplementary refs. 1–35.
Supplementary Video 1
Supplementary video for Fig. 1e.
Supplementary Video 2
Supplementary video for Fig. 2a.
Supplementary Video 3
Supplementary video for Fig. 2b.
Supplementary Video 4
Supplementary video for Fig. 2c.
Supplementary Video 5
Supplementary video for Fig. 2d.
Supplementary Video 6
Supplementary video for Fig. 3.
Supplementary Video 7
Supplementary video for Supplementary Fig. 4.
Rights and permissions
About this article
Cite this article
Willke, P., Yang, K., Bae, Y. et al. Magnetic resonance imaging of single atoms on a surface. Nat. Phys. 15, 1005–1010 (2019). https://doi.org/10.1038/s41567-019-0573-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-019-0573-x
This article is cited by
-
Electric control of spin transitions at the atomic scale
Nature Communications (2023)
-
Coherent optical two-photon resonance tomographic imaging in three dimensions
Communications Physics (2023)
-
Single-atom nanozymes towards central nervous system diseases
Nano Research (2023)
-
Enhanced conductance response in radio frequency scanning tunnelling microscopy
Scientific Reports (2022)
-
Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions
Nature Chemistry (2022)