Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple superionic states in helium–water compounds

Abstract

Superionic states are phases of matter that can simultaneously exhibit some of the properties of a liquid and of a solid. For example, in superionic ice, hydrogen atoms can move freely while oxygen atoms are fixed in their sublattice. ‘Superionicity’ has attracted much attention in both fundamental science and applications. Helium is the most inert element in nature and it is generally considered to be unreactive. Here, we use ab initio calculations to show that He and H2O can form stable compounds within a large pressure range that can exist even close to ambient pressure. Surprisingly, we find that they can form two previously unknown types of superionic state under high pressure and high temperature. In the first of these phases, the helium atoms exhibit liquid behaviour within a fixed ice-lattice framework. In the second phase, both helium and hydrogen atoms move in a liquid-like fashion within a fixed oxygen sublattice. As the He–O interaction is weaker than the H–O interaction, the helium atoms in these superionic states have larger diffusion coefficients and lower ‘melting’ temperatures than those of hydrogen, although helium is heavier than hydrogen. The insertion of helium atoms substantially decreases the pressure at which superionic states may be formed, compared to those in pure ice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermodynamics of the He–H2O system and crystal structures of the stable compounds.
Fig. 2: Behaviour of H and He atoms compared to O atoms in \({\boldsymbol{Fd}}\bar 3{\boldsymbol{m}}\) He2H2O from AIMD simulations at 1,600 K, 2,000 K and 2,300 K.
Fig. 3: Proposed phase diagram of the helium–water system at high pressures obtained from our structure searches and AIMD simulations.
Fig. 4: RDFs g(r) of the I41md HeH2O phase.
Fig. 5: Vibrational DOS of \({\boldsymbol{Fd}}\bar 3{\boldsymbol{m}}\) phase He2H2O and He2D2O.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Demontis, P., LeSar, R. & Klein, M. L. New high-pressure phases of ice. Phys. Rev. Lett. 60, 2284–2287 (1988).

    Article  ADS  Google Scholar 

  2. Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

    Article  ADS  Google Scholar 

  3. Yakushev, V., Postnov, V., Fortov, V. & Yakysheva, T. Electrical conductivity of water during quasi-isentropic compression to 130 GPa. J. Exp. Theor. Phys. 90, 617–622 (2000).

    Article  ADS  Google Scholar 

  4. Chau, R., Mitchell, A., Minich, R. & Nellis, W. Electrical conductivity of water compressed dynamically to pressures of 70–180 GPa (0.7–1.8 Mbar). J. Chem. Phys. 114, 1361–1365 (2001).

    Article  ADS  Google Scholar 

  5. Goncharov, A. F. et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005).

    Article  ADS  Google Scholar 

  6. Goldman, N., Fried, L. E., Kuo, I.-F. W. & Mundy, C. J. Bonding in the superionic phase of water. Phys. Rev. Lett. 94, 217801 (2005).

    Article  ADS  Google Scholar 

  7. French, M., Mattsson, T. R., Nettelmann, N. & Redmer, R. Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors. Phys. Rev. B 79, 054107 (2009).

    Article  ADS  Google Scholar 

  8. Redmer, R., Mattsson, T. R., Nettelmann, N. & French, M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211, 798–803 (2011).

    Article  ADS  Google Scholar 

  9. Ninet, S., Datchi, F. & Saitta, A. M. Proton disorder and superionicity in hot dense ammonia ice. Phys. Rev. Lett. 108, 165702 (2012).

    Article  ADS  Google Scholar 

  10. Sugimura, E. et al. Experimental evidence of superionic conduction in H2O ice. J. Chem. Phys. 137, 194505 (2012).

    Article  ADS  Google Scholar 

  11. Wilson, H. F., Wong, M. L. & Militzer, B. Superionic to superionic phase change in water: consequences for the interiors of Uranus and Neptune. Phys. Rev. Lett. 110, 151102 (2013).

    Article  ADS  Google Scholar 

  12. Sun, J., Clark, B. K., Torquato, S. & Car, R. The phase diagram of high-pressure superionic ice. Nat. Commun. 6, 8156 (2015).

    Article  ADS  Google Scholar 

  13. Bethkenhagen, M., Cebulla, D., Redmer, R. & Hamel, S. Superionic phases of the 1:1 water–ammonia mixture. J. Phys. Chem. A 119, 10582–10588 (2015).

    Article  Google Scholar 

  14. French, M., Desjarlais, M. P. & Redmer, R. Ab initio calculation of thermodynamic potentials and entropies for superionic water. Phys. Rev. E 93, 022140 (2016).

    Article  ADS  Google Scholar 

  15. Hernandez, J.-A. & Caracas, R. Superionic phase transitions in body-centered cubic H2O ice. Phys. Rev. Lett. 117, 135503 (2016).

    Article  ADS  Google Scholar 

  16. Bethkenhagen, M. et al. Planetary ices and the linear mixing approximation. Astrophys. J. 848, 67 (2017).

    Article  ADS  Google Scholar 

  17. Jiang, X., Wu, X., Zheng, Z., Huang, Y. & Zhao, J. Ionic and superionic phases in ammonia dihydrate NH3H2O under high pressure. Phys. Rev. B 95, 144104 (2017).

    Article  ADS  Google Scholar 

  18. Hernandez, J.-A. & Caracas, R. Proton dynamics and the phase diagram of dense water ice. J. Chem. Phys. 148, 214501 (2018).

    Article  ADS  Google Scholar 

  19. Millot, M. et al. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018).

    Article  Google Scholar 

  20. Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).

    Article  ADS  Google Scholar 

  21. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  ADS  Google Scholar 

  22. Wang, X., Xiao, R., Li, H. & Chen, L. Oxysulfide LiAlSO: a lithium superionic conductor from first principles. Phys. Rev. Lett. 118, 195901 (2017).

    Article  ADS  Google Scholar 

  23. He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).

    Article  ADS  Google Scholar 

  24. Liu, H. et al. Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422 (2012).

    Article  ADS  Google Scholar 

  25. Qiu, W. et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. Proc. Natl Acad. Sci. USA 111, 15031–15035 (2014).

    Article  ADS  Google Scholar 

  26. Cazorla, C., Errandonea, D. & Sola, E. High-pressure phases, vibrational properties, and electronic structure of NeHe2 and ArHe2: a first-principles study. Phys. Rev. B 80, 064105 (2009).

    Article  ADS  Google Scholar 

  27. Wang, Y., Zhang, J., Liu, H. & Yang, G. Prediction of the Xe–He binary phase diagram at high pressures. Chem. Phys. Lett. 640, 115–118 (2015).

    Article  ADS  Google Scholar 

  28. Vos, W. L. et al. A high-pressure van der Waals compound in solid nitrogen–helium mixtures. Nature 358, 46 (1992).

    Article  ADS  Google Scholar 

  29. Ninet, S., Weck, G., Loubeyre, P. & Datchi, F. Structural and vibrational properties of the van der Waals compound (N2)11He up to 135 GPa. Phys. Rev. B 83, 134107 (2011).

    Article  ADS  Google Scholar 

  30. Dong, X. et al. A stable compound of helium and sodium at high pressure. Nat. Chem. 9, 440–445 (2017).

    Article  Google Scholar 

  31. Monserrat, B., Martinez-Canales, M., Needs, R. J. & Pickard, C. J. Helium–iron compounds at terapascal pressures. Phys. Rev. Lett. 121, 015301 (2018).

    Article  ADS  Google Scholar 

  32. Zhang, J. et al. Rare helium-bearing compound FeO2He stabilized at deep-earth conditions. Phys. Rev. Lett. 121, 255703 (2018).

    Article  ADS  Google Scholar 

  33. Gao, H., Sun, J., Pickard, C. J. & Needs, R. J. Prediction of pressure-induced stabilization of noble-gas-atom compounds with alkali oxides and alkali sulfides. Phys. Rev. Mater. 3, 015002 (2019).

    Article  Google Scholar 

  34. Liu, Z. et al. Reactivity of He with ionic compounds under high pressure. Nat. Commun. 9, 951 (2018).

    Article  ADS  Google Scholar 

  35. Li, Y. et al. Route to high-energy density polymeric nitrogen t-N via He–N compounds. Nat. Commun. 9, 722 (2018).

    Article  ADS  Google Scholar 

  36. Liu, H., Yao, Y. & Klug, D. D. Stable structures of He and H2O at high pressure. Phys. Rev. B 91, 014102 (2015).

    Article  ADS  Google Scholar 

  37. Teeratchanan, P. & Hermann, A. Computational phase diagrams of noble gas hydrates under pressure. J. Chem. Phys. 143, 154507 (2015).

    Article  ADS  Google Scholar 

  38. Bronstein, Y., Depondt, P., Finocchi, F. & Saitta, A. M. Quantum-driven phase transition in ice described via an efficient Langevin approach. Phys. Rev. B 89, 214101 (2014).

    Article  ADS  Google Scholar 

  39. Hermann, A., Ashcroft, N. W. & Hoffmann, R. Isotopic differentiation and sublattice melting in dense dynamic ice. Phys. Rev. B 88, 214113 (2013).

    Article  ADS  Google Scholar 

  40. Xia, K. et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull. 63, 817–824 (2018).

    Article  Google Scholar 

  41. Pickard, C. J. & Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006).

    Article  ADS  Google Scholar 

  42. Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

    Article  ADS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  44. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  ADS  Google Scholar 

  45. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567–570 (2009).

    Google Scholar 

  46. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  47. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009).

    Article  ADS  Google Scholar 

  48. Hamada, I. van der Waals density functional made accurate. Phys. Rev. B 89, 121103 (2014).

    Article  ADS  Google Scholar 

  49. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

J.S. gratefully acknowledges financial support from the MOST of China (grant nos. 2016YFA0300404 and 2015CB921202), the National Natural Science Foundation of China (grant nos. 11574133 and 11834006), the NSF of Jiangsu Province (grant no. BK20150012), the Science Challenge Project (no. TZ2016001), and the Fundamental Research Funds for the Central Universities and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the 2nd phase) under grant no. U1501501. C.J.P. and R.J.N. acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the UK under grants [EP/G007489/2] (C.J.P.) and [EP/P034616/1] (R.J.N.). C.J.P. also acknowledges financial support from the EPSRC and the Royal Society through a Royal Society Wolfson Research Merit award. The calculations were carried out using supercomputers at the High Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures, the high-performance supercomputing centre of Nanjing University, ‘Tianhe-2’ at NSCC-Guangzhou and the CSD3 Peta4 CPU/KNL machine at the University of Cambridge.

Author information

Authors and Affiliations

Authors

Contributions

J.S. conceived the project. J.S. and H.-T.W. led the project. C.L., H.G., Y.W. and C.J.P. performed the calculations. C.L., H.G., C.J.P. and J.S. analysed the data. C.L., J.S., R.J.N., H.-T.W. and D.X. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jian Sun or Hui-Tian Wang.

Ethics declarations

Competing interests

C.J.P. is an author of the CASTEP code, and receives royalty payments from its commercial sales by Dassault Systèmes.

Additional information

Peer review information: Nature Physics thanks Marius Millot and Ronald Redmer for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Gao, H., Wang, Y. et al. Multiple superionic states in helium–water compounds. Nat. Phys. 15, 1065–1070 (2019). https://doi.org/10.1038/s41567-019-0568-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0568-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing