Classifying snapshots of the doped Hubbard model with machine learning

Abstract

Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of complex many-body systems. We implement machine learning to analyse and classify such snapshots of ultracold atoms. Specifically, we compare the data from an experimental realization of the two-dimensional Fermi–Hubbard model to two theoretical approaches: a doped quantum spin liquid state of resonating valence bond type1,2, and the geometric string theory3,4, describing a state with hidden spin order. This technique considers all available information without a potential bias towards one particular theory by the choice of an observable and can therefore select the theory that is more predictive in general. Up to intermediate doping values, our algorithm tends to classify experimental snapshots as geometric-string-like, as compared to the doped spin liquid. Our results demonstrate the potential for machine learning in processing the wealth of data obtained through quantum gas microscopy for new physical insights.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Classifying quantum gas microscope snapshots of the doped Fermi–Hubbard model with CNNs.
Fig. 2: Classifying single snapshots of the many-body density matrix.
Fig. 3: Classifying experimental data.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. The raw data are available in ref. 32.

Code availability

The computer codes used to generate the results of this paper are available from the corresponding author upon reasonable request.

References

  1. 1.

    Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    ADS  Article  Google Scholar 

  2. 2.

    Baskaran, G., Zou, Z. & Anderson, P. The resonating valence bond state and high-T c superconductivity—a mean field theory. Solid State Commun. 63, 973–976 (1987).

    ADS  Article  Google Scholar 

  3. 3.

    Grusdt, F. et al. Parton theory of magnetic polarons: mesonic resonances and signatures in dynamics. Phys. Rev. X 8, 011046 (2018).

    Google Scholar 

  4. 4.

    Grusdt, F., Bohrdt, A. & Demler, E. Microscopic spinon-chargon theory of magnetic polarons in the t-J model. Preprint at https://arxiv.org/abs/1901.01113 (2019).

  5. 5.

    Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Cheuk, L. W. et al. Observation of spatial charge and spin correlations in the 2D Fermi–Hubbard model. Science 353, 1260–1264 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Hilker, T. A. et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators. Science 357, 484–487 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Brown, P. T. et al. Bad metallic transport in a cold atom Fermi–Hubbard system. Science 363, 379–382 (2019).

    ADS  Article  Google Scholar 

  13. 13.

    Nichols, M. A. et al. Spin transport in a Mott insulator of ultracold fermions. Science 363, 383–387 (2019).

    ADS  Article  Google Scholar 

  14. 14.

    Salomon, G. et al. Direct observation of incommensurate magnetism in Hubbard chains. Nature 565, 56–60 (2019).

    ADS  Article  Google Scholar 

  15. 15.

    Chiu, C. S. et al. String patterns in the doped Hubbard model. Preprint at https://arxiv.org/abs/1810.03584 (2018).

  16. 16.

    Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Glasser, I., Pancotti, N., August, M., Rodriguez, I. D. & Cirac, J. I. Neural-network quantum states, string-bond states, and chiral topological states. Phys. Rev. X 8, 011006 (2018).

    Google Scholar 

  18. 18.

    Choo, K., Carleo, G., Regnault, N. & Neupert, T. Symmetries and many-body excitations with neural-network quantum states. Phys. Rev. Lett. 121, 167204 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Lu, S., Gao, X. & Duan, L.-M. Efficient representation of topologically ordered states with restricted Boltzmann machines. Phys. Rev. B 99, 155136 (2019).

    ADS  Article  Google Scholar 

  20. 20.

    Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017).

    Article  Google Scholar 

  21. 21.

    van Nieuwenburg, E. P. L., Liu, Y.-H. & Huber, S. D. Learning phase transitions by confusion. Nat. Phys. 13, 435–439 (2017).

    Article  Google Scholar 

  22. 22.

    Rem, B. S. et al. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys. https://doi.org/10.1038/s41567-019-0554-0 (2019).

  23. 23.

    Broecker, P., Carrasquilla, J., Melko, R. G. & Trebst, S. Machine learning quantum phases of matter beyond the fermion sign problem. Sci. Rep. 7, 8823 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Ch’ng, K., Carrasquilla, J., Melko, R. G. & Khatami, E. Machine learning phases of strongly correlated fermions. Phys. Rev. X 7, 031038 (2017).

    Google Scholar 

  25. 25.

    Beach, M. J. S., Golubeva, A. & Melko, R. G. Machine learning vortices at the Kosterlitz–Thouless transition. Phys. Rev. 97, 045207 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Dong, X.-Y., Pollmann, F. & Zhang, X.-F. Machine learning of quantum phase transitions. Phys. Rev. B 99, 121104 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    Greitemann, J., Liu, K. & Pollet, L. Probing hidden spin order with interpretable machine learning. Phys. Rev. B 99, 060404 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    Liu, K., Greitemann, J. & Pollet, L. Learning multiple order parameters with interpretable machines. Phys. Rev. B 99, 104410 (2019).

    ADS  Article  Google Scholar 

  29. 29.

    Koch-Janusz, M. & Ringel, Z. Mutual information, neural networks and the renormalization group. Nat. Phys. 14, 578–582 (2018).

    Article  Google Scholar 

  30. 30.

    Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018).

    Article  Google Scholar 

  31. 31.

    Zhang, Y. et al. Machine learning in electronic-quantum-matter imaging experiments. Nature https://doi.org/10.1038/s41586-019-1319-8 (2019).

    Article  Google Scholar 

  32. 32.

    Chiu, C. S. et al. Data for ‘String patterns in the doped Hubbard model’ (Harvard Dataverse, 2019); https://doi.org/10.7910/DVN/1CSVBV

  33. 33.

    Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, 1998).

  34. 34.

    Grusdt, F., Zhu, Z., Shi, T. & Demler, E. Meson formation in mixed-dimensional t–J models. SciPost Phys. 5, 057 (2018).

    ADS  Article  Google Scholar 

  35. 35.

    Marston, J. B. & Affleck, I. Large-n limit of the Hubbard-Heisenberg model. Phys. Rev. B 39, 11538–11558 (1989).

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Beran, P., Poilblanc, D. & Laughlin, R. Evidence for composite nature of quasiparticles in the 2d t-J model. Nucl. Phys. B 473, 707–720 (1996).

    ADS  Article  Google Scholar 

  37. 37.

    Baskaran, G. 3/2-Fermi liquid: the secret of high-Tc cuprates. Preprint at https://arxiv.org/abs/0709.0902 (2007).

  38. 38.

    Punk, M., Allais, A. & Sachdev, S. Quantum dimer model for the pseudogap metal. Proc. Natl Acad. Sci. USA 112, 9552–9557 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Bulaevskii, L., Nagaev, E. & Khomskii, D. A new type of auto-localized state of a conduction electron in an antiferromagnetic semiconductor. J. Exp. Theor. Phys. 27, 836 (1968).

    ADS  Google Scholar 

  40. 40.

    Trugman, S. A. Interaction of holes in a Hubbard antiferromagnet and high-temperature superconductivity. Phys. Rev. B 37, 1597–1603 (1988).

    ADS  Article  Google Scholar 

  41. 41.

    Manousakis, E. String excitations of a hole in a quantum antiferromagnet and photoelectron spectroscopy. Phys. Rev. B 75, 035106 (2007).

    ADS  Article  Google Scholar 

  42. 42.

    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

Download references

Acknowledgements

We thank E. Altman, I. Bloch, J. Carrasquilla, M. Kanász-Nagy, E. Khatami, F. Pollmann, A. Rosch, S. Sachdev, R. Schmidt and D. Sels for insightful discussions and M. Kanász-Nagy in addition for his Heisenberg QMC code. We acknowledge support from Harvard-MIT CUA, NSF grant no. DMR-1308435, AFOSR-MURI Quantum Phases of Matter (grant FA9550-14-1-0035), AFOSR grant no. FA9550-16-10323, DoD NDSEG, the Gordon and Betty Moore Foundation EPIQS programme and grant no. 6791, NSF GRFP and grant nos. PHY-1506203 and PHY-1734011, ONR grant no. N00014-18-1-2863, SNSF, Studienstiftung des deutschen Volkes, and the Technical University of Munich - Institute for Advanced Study, funded by the German Excellence Initiative and the European Union FP7 under grant agreement 291763, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy–EXC-2111–390814868, the DFG grant no. KN1254/1-1, and DFG TRR80 (Project F8).

Author information

Affiliations

Authors

Contributions

A.B., F.G. and M.K. devised the method. A.B. carried out the numerical simulations and analysis. F.G. and E.D. developed the geometric string theory. C.S.C., G.J., M.X. and D.G. performed the experiments. M.G., E.D., F.G. and M.K. supervised the work. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Michael Knap.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–8 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bohrdt, A., Chiu, C.S., Ji, G. et al. Classifying snapshots of the doped Hubbard model with machine learning. Nat. Phys. 15, 921–924 (2019). https://doi.org/10.1038/s41567-019-0565-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing