Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of nodal-line semimetal with ultracold fermions in an optical lattice

Abstract

The observation of topological phases beyond two dimensions, as widely reported in solid-state systems1,2, has been an open challenge for ultracold atoms. Although many theoretical schemes have been proposed, the experimental complexity in realizing and characterizing the three-dimensional (3D) band structure has acted as a barrier against experiments achieving this. Here, we realize a 3D spin–orbit coupled nodal-line semimetal in an optical Raman lattice filled with ultracold fermions, and observe the bulk line nodes in the band structure. The realized topological semimetal exhibits an emergent magnetic group symmetry. This allows detection of the nodal lines by effectively reconstructing the 3D topological band from a series of measurements of integrated spin textures, which precisely render spin textures on the parameter-tuned magnetic-group-symmetric planes. The detection technique can be applied generally to explore 3D topological states of similar symmetries. Furthermore, we observe the band inversion lines from topological quench dynamics, which are bulk counterparts of Fermi arc states and connect the Dirac points, reconfirming the realized topological band. Our results demonstrate an approach to effectively observe 3D band topology, and open the way to probe exotic topological physics for ultracold atoms in high dimensions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SO coupling in an optical Raman lattice.
Fig. 2: Nodal-line semimetal band structure.
Fig. 3: Measurement of nodal lines in the 3D momentum space.
Fig. 4: Measuring band inversion lines from quantum quench dynamics.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  2. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  3. Liu, Z. K. et al. A stable three-dimensional topological dirac semimetal Cd3As2. Nat. Mater. 13, 677–681 (2014).

    Article  ADS  Google Scholar 

  4. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  5. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  6. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  Google Scholar 

  7. Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice: (I). Proof by homotopy theory. Nucl. Phys. B 185, 20–40 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  8. Fang, C., Chen, Y., Kee, H. Y. & Fu, L. Topological nodal line semimetals with and without spin–orbital coupling. Phys. Rev. B 92, 081201 (2015).

    Article  ADS  Google Scholar 

  9. Bzdušek, T., Wu, Q., Rüegg, A., Sigrist, M. & Soluyanov, A. A. Nodal-chain metals. Nature 538, 75–78 (2016).

    Article  ADS  Google Scholar 

  10. Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  ADS  Google Scholar 

  11. Lou, R. et al. Experimental observation of bulk nodal lines and electronic surface states in ZrB2. npj Quantum Mater. 3, 43 (2018).

    Article  ADS  Google Scholar 

  12. Dalibard, J., Gerbier, F., Juzeliūnas, G. & Oehberg, P. Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011).

    Article  ADS  Google Scholar 

  13. Goldman, N., Juzeliunas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

    Article  ADS  Google Scholar 

  14. Zhai, H. Degenerate quantum gases with spin–orbit coupling: a review. Rep. Prog. Phys. 78, 026001 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, L. & Liu, X. -J. in Synthetic Spin–Orbit Coupling in Cold Atoms (eds Zhang, W. & Sa Melo, C. A. R.) Ch. 1, 1–87 (World Scientific, 2018).

  16. Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  17. Wu, Z. et al. Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates. Science 354, 83–88 (2016).

    Article  ADS  Google Scholar 

  18. Liu, X.-J., Law, K. T. & Ng, T. K. Realization of 2D spin–orbit interaction and exotic topological orders in cold atoms. Phys. Rev. Lett. 112, 086401 (2014).

    Article  ADS  Google Scholar 

  19. Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017).

    Article  ADS  Google Scholar 

  20. Song, B. et al. Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv. 4, eaao4748 (2018).

    Article  Google Scholar 

  21. Xu, Y. & Duan, L. M. Type-II Weyl points in three-dimensional cold-atom optical lattices. Phys. Rev. A 94, 053619 (2016).

    Article  ADS  Google Scholar 

  22. Xu, Y. & Zhang, C. Out-of-equilibrium open quantum systems: a comparison of approximate quantum master equation approaches with exact results. Phys. Rev. A 93, 063606 (2016).

    Article  ADS  Google Scholar 

  23. Wang, Y. & Liu, X.-J. Predicted scaling behavior of bloch oscillation in Weyl semimetals. Phys. Rev. A 94, 031603(R) (2016).

    Article  ADS  Google Scholar 

  24. He, W.-Y., Xu, D.-H., Zhou, B. T., Zhou, Q. & Law, K. T. From nodal-ring topological superfluids to spiral Majorana modes in cold atomic systems. Phys. Rev. A 97, 043618 (2018).

    Article  ADS  Google Scholar 

  25. Wang, B.-Z. et al. Dirac-, Rashba- and Weyl-type spin–orbit couplings: toward experimental realization in ultracold atoms. Phys. Rev. A 97, 011605(R) (2018).

    Article  ADS  Google Scholar 

  26. Dubček, T. et al. Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space. Phys. Rev. Lett. 114, 225301 (2015).

    Article  ADS  Google Scholar 

  27. Tran, D. T., Dauphin, A., Grushin, A. G., Zoller, P. & Goldman, N. Probing topology by heating: quantized circular dichroism in ultracold atoms. Sci. Adv. 3, e1701207 (2017).

    Article  ADS  Google Scholar 

  28. Poon, T. F. J. & Liu, X.-J. From a semimetal to a chiral Fulde–Ferrell superfluid. Phys. Rev. B 97, 020501(R) (2018).

    Article  ADS  Google Scholar 

  29. Lin, Y. J., Jiménez-Garca, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

    Article  ADS  Google Scholar 

  30. Wang, P. et al. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012).

    Article  ADS  Google Scholar 

  31. Cheuk, L. W. et al. Spin-injection spectroscopy of a spin–orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012).

    Article  ADS  Google Scholar 

  32. Song, B. et al. Spin–orbit-coupled two-electron Fermi gases of ytterbium atoms. Phys. Rev. A 94, 061604 (2016).

    Article  ADS  Google Scholar 

  33. Zhang, L., Zhang, L., Niu, S. & Liu, X.-J. Dynamical classification of topological quantum phases. Sci. Bull. 63, 1385–1391 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge valuable discussions with L. Zhang. This work was supported by the Joint Research Scheme sponsored by the Research Grants Council (RGC) of the Hong Kong and National Natural Science Foundation of China (NSFC) (project nos. N-HKUST601/17 and 11761161003). G.-B.J. acknowledges support from the RGC, the Croucher Foundation (ECS26300014, GRF16300215, GRF16311516, GRF16305317 and C6005-17G-A) and Croucher Innovation grants. G.-B.J also acknowledges partial support (SSTSP grant) from HKUST. X.-J.L. acknowledges support from the National Key R&D Program of China (2016YFA0301604), NSFC (11574008 and 11825401) and the Strategic Priority Research Program of the Chinese Academy of Science (grant no. XDB28000000).

Author information

Authors and Affiliations

Authors

Contributions

B.S., C.H. and Z.R. carried out the experiment and data analysis and helped with numerical calculations. S.N. proved the results of reconstructing the 3D band topology by 2D spin-texture imaging. S.N. and L.Z. performed theoretical modelling and numerical calculations. G.-B.J. and X.-J.L. conceived the project and supervised the research.

Corresponding authors

Correspondence to Xiong-Jun Liu or Gyu-Boong Jo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Supplementary Figs. 1–8 and Supplementary references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., He, C., Niu, S. et al. Observation of nodal-line semimetal with ultracold fermions in an optical lattice. Nat. Phys. 15, 911–916 (2019). https://doi.org/10.1038/s41567-019-0564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0564-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing