Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological transition in stratified fluids


Lamb waves are trapped acoustic-gravity waves that propagate energy over great distances along a solid boundary in density-stratified, compressible fluids1,2. They constitute useful indicators of explosions in planetary atmospheres3,4. When the density stratification exceeds a threshold, or when the impermeability condition at the boundary is relaxed, atmospheric Lamb waves suddenly disappear5. Here, we use topological arguments to predict the possible existence of new trapped Lamb-like waves in the absence of a solid boundary, depending on the stratification profile. The topological origin of the Lamb-like waves is emphasized by relating their existence to two-band crossing points carrying opposite Chern numbers. The existence of these band crossings coincides with a restoration of the vertical mirror symmetry that is in general broken by gravity. From this perspective, Lamb-like waves also bear strong similarities with boundary modes encountered in the quantum valley Hall effect6,7,8 and its classical analogues9,10,11. Our study shows that the presence of Lamb-like waves encodes essential information on the underlying stratification profile in astrophysical and geophysical flows, which is often poorly constrained by observations.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Bulk dispersion relation for stratified compressible fluid.
Fig. 2: Berry curvature.
Fig. 3: Topological transition in acoustic-gravity wave spectra, depending on the sign of S.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon request.


  1. 1.

    Lamb, H. On atmospheric oscillations. Proc. R. Soc. Lond. A 84, 551–572 (1911).

    ADS  Article  Google Scholar 

  2. 2.

    Vallis, G. K. Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, 2017).

  3. 3.

    Bretherton, F. Lamb waves in a nearly isothermal atmosphere. Q. J. R. Meteorol. Soc. 95, 754–757 (1969).

    ADS  Article  Google Scholar 

  4. 4.

    Lindzen, R. S. & Blake, D. Lamb waves in the presence of realistic distributions of temperature and dissipation. J. Geophys. Res. 77, 2166–2176 (1972).

    ADS  Article  Google Scholar 

  5. 5.

    Iga, K. Transition modes in stratified compressible fluids. Fluid Dyn. Res. 28, 465–486 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    ADS  Article  Google Scholar 

  7. 7.

    Li, J., Martin, I., Büttiker, M. & Morpurgo, A. F. Topological origin of subgap conductance in insulating bilayer graphene. Nat. Phys. 7, 38–42 (2011).

    Google Scholar 

  8. 8.

    Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Pal, R. K. & Ruzzene, M. Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect. New J. Phys. 19, 025001 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Noh, J., Huang, S., Chen, K. P. & Rechtsman, M. C. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett. 120, 063902 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    Qian, K., Apigo, D. J., Prodan, C., Barlas, Y. & Prodan, E. Theory and experimental investigation of the quantum valley Hall effect. Preprint at (2018).

  12. 12.

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Volovik, G. E. in The Universe in a Helium Droplet 117 (Oxford University Press, 2003).

  14. 14.

    Nakahara, M. Geometry, Topology and Physics (CRC Press, 2003).

  15. 15.

    Faure, F. & Zhilinskii, B. Topological Chern indices in molecular spectra. Phys. Rev. Lett. 85, 960–963 (2000).

    ADS  Article  Google Scholar 

  16. 16.

    Jackiw, R. & Schrieffer, J. R. Solitons with fermion number 1/2 in condensed matter and relativistic field theories. Nucl. Phys. B 190, 253–265 (1981).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Teo, J. C. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Liu, C.-X., Ye, P. & Qi, X.-L. Chiral gauge field and axial anomaly in a Weyl semimetal. Phys. Rev. B 87, 235306 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Faure, F. & Zhilinskii, B. Topologically coupled energy bands in molecules. Phys. Lett. A 302, 242–252 (2002).

    ADS  Article  Google Scholar 

  20. 20.

    Fukui, T., Shiozaki, K., Fujiwara, T. & Fujimoto, S. Bulk-edge correspondence for Chern topological phases: a viewpoint from a generalized index theorem. J. Phys. Soc. Jpn 81, 114602 (2012).

    ADS  Article  Google Scholar 

  21. 21.

    Bal, G. Continuous bulk and interface description of topological insulators. Preprint at (2018).

  22. 22.

    Delplace, P., Marston, J. B. & Venaille, A. Topological origin of equatorial waves. Science 358, 1075–1077 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Faure, F. Manifestation of the topological index formula in quantum waves and geophysical waves. Preprint at (2019).

  24. 24.

    Zhang, X., Xiao, M., Cheng, Y., Lu, M.-H. & Christensen, J. Topological sound. Commun. Phys. 1, 97 (2018).

    Article  Google Scholar 

  25. 25.

    Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Yves, S. et al. Crystalline metamaterials for topological properties at subwavelength scales. Nat. Commun. 8, 16023 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Wang, J. & Mei, J. Topological valley-chiral edge states of Lamb waves in elastic thin plates. Appl. Phys. Express 11, 057302 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Kaina, N., Lemoult, F., Fink, M. & Lerosey, G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77–81 (2015).

    Article  Google Scholar 

  29. 29.

    Montambaux, G. Artificial graphenes: Dirac matter beyond condensed matter. Comptes Rendus Phys. 19, 285–305 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Goerbig, M. O., Fuchs, J.-N., Montambaux, G. & Piéchon, F. Tilted anisotropic Dirac cones in quinoid-type graphene and α-(BEDT-TTE)2I3. Phys. Rev. B 78, 045415 (2008).

    ADS  Article  Google Scholar 

  31. 31.

    Trescher, M., Sbierski, B., Brouwer, P. W. & Bergholtz, E. J. Quantum transport in Dirac materials: signatures of tilted and anisotropic Dirac and Weyl cones. Phys. Rev. B 91, 115135 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    Zhang, K. et al. Experimental evidence for type-II Dirac semimetal in PtSe2. Phys. Rev. B 96, 125102 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Milićević, M. et al. Tilted and type-III Dirac cones emerging from flat bands in photonic orbital graphene. Preprint at (2018).

  34. 34.

    Budden, K. G. & Smith, M. Phase memory and additional memory in W.K.B. solutions for wave propagation in stratified media. Proc. R. Soc. Lond. A 350, 27–46 (1976).

    ADS  Article  Google Scholar 

  35. 35.

    Godin, O. A. Wentzel–Kramers–Brillouin approximation for atmospheric waves. J. Fluid Mech. 777, 260–290 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Vanneste, J. & Shepherd, T. On wave action and phase in the non–canonical hamiltonian formulation. Proc. R. Soc. Lond. A 455, 3–21 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    Dedalus project (ASCL, 2016);

Download references


The authors thank L.-A. Couston for help with the Dedalus code, F. Faure for providing useful insights on the index theorem, T. Alboussière, I. Baraffe, G. Chabrier, G. Laibe and M. Le Bars for their input concerning potential geophysical and astrophysical applications and L. Maas, B. Marston and N. Perez for useful comments on the manuscript. P.D. and A.V. were partly funded by ANR-18-CE30-0002-01 during this work.

Author information




This Letter emanates from the master’s project of M.P. supervised by P.D. and A.V. All authors participated equally in the study. P.D. and A.V. wrote the manuscript.

Corresponding authors

Correspondence to Pierre Delplace or Antoine Venaille.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Physics thanks Tudor Dimofte and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary references 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perrot, M., Delplace, P. & Venaille, A. Topological transition in stratified fluids. Nat. Phys. 15, 781–784 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing