Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental few-copy multipartite entanglement detection


Many future quantum technologies rely on the generation of entangled states. Quantum devices will require verification of their operation below some error threshold, but the reliable detection of quantum entanglement remains a considerable challenge for large-scale quantum systems. Well-established techniques for this task rely on the measurement of expectation values of entanglement witnesses; however these require many measurement settings to be extracted. Here, we develop a generic framework for efficient entanglement detection that translates any entanglement witness into a resource-efficient probabilistic scheme, whose confidence grows exponentially with the number of individual detection events, namely copies of the quantum state. To benchmark our findings, we experimentally verify the presence of entanglement in a photonic six-qubit cluster state generated using three single-photon sources operating at telecommunication wavelengths. We find that the presence of entanglement can be certified with at least 99.74% confidence by detecting 20 copies of the quantum state. Additionally, we show that genuine six-qubit entanglement is verified with at least 99% confidence by using 112 copies of the state. Our protocol can be carried out with a remarkably low number of copies and in the presence of experimental imperfections, making it a practical and applicable method to verify large-scale quantum devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the entanglement detection protocol.
Fig. 2: Schematic of an H-shaped six-qubit cluster state.
Fig. 3: Experimental set-up.
Fig. 4: Growth of confidence of entanglement with the number of copies of the quantum state.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. Arrazola, J. M. et al. Reliable entanglement verification. Phys. Rev. A 87, 062331 (2013).

    Article  ADS  Google Scholar 

  2. Wang, X.-L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).

    Article  ADS  Google Scholar 

  3. Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    Article  ADS  Google Scholar 

  4. Song, C. et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119, 180511 (2017).

    Article  ADS  Google Scholar 

  5. Friis, N. et al. Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X 8, 021012 (2018).

    Google Scholar 

  6. Wang, X.-L. et al. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).

    Article  ADS  Google Scholar 

  7. Chen, M., Menicucci, N. C. & Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014).

    Article  ADS  Google Scholar 

  8. Yoshikawa, J.-I. et al. Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photon. 1, 060801 (2016).

    Article  ADS  Google Scholar 

  9. Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645–15653 (2017).

    Article  ADS  Google Scholar 

  10. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  11. Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  12. Tóth, G. & Gühne, O. Detecting genuine multipartite entanglement with two local measurements. Phys. Rev. Lett. 94, 060501 (2005).

    Article  ADS  Google Scholar 

  13. Knips, L., Schwemmer, C., Klein, N., Wieśniak, M. & Weinfurter, H. Multipartite entanglement detection with minimal effort. Phys. Rev. Lett. 117, 210504 (2016).

    Article  ADS  Google Scholar 

  14. Tran, M. C., Dakić, B., Arnault, F., Laskowski, W. & Paterek, T. Quantum entanglement from random measurements. Phys. Rev. A 92, 050301 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  15. Bavaresco, J. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys. 14, 1032–1037 (2018).

    Article  Google Scholar 

  16. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Article  ADS  Google Scholar 

  17. Gross, D., Liu, Y.-K., Flammia, S. T., Becker, S. & Eisert, J. Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010).

    Article  ADS  Google Scholar 

  18. Montanaro, A. Learning stabilizer states by Bell sampling. Preprint at (2017).

  19. Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018).

    Article  Google Scholar 

  20. Flammia, S. T. & Liu, Y.-K. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011).

    Article  ADS  Google Scholar 

  21. Mayers, D. & Yao, A. Self testing quantum apparatus. QIC 4, 273–286 (2004).

    MathSciNet  MATH  Google Scholar 

  22. McKague, M. in Theory of Quantum Computation, Communication, and Cryptography Vol. 6745 (eds Bacon, D., Martin-Delgado, M. & Roettler, M) 104–120 (Springer, 2014).

  23. Bancal, J.-D., Navascués, M., Scarani, V., Vértesi, T. & Yang, T. H. Physical characterization of quantum devices from nonlocal correlations. Phys. Rev. A 91, 022115 (2015).

    Article  ADS  Google Scholar 

  24. Miller, C. A. & Shi, Y. Optimal robust quantum self-testing by binary nonlocal XOR games. Preprint at (2012).

  25. Reichardt, B. W., Unger, F. & Vazirani, U. A classical leash for a quantum system: command of quantum systems via rigidity of CHSH games. Preprint at (2012).

  26. McKague, M., Yang, T. H. & Scarani, V. Robust self-testing of the singlet. J. Phys. A Math. Theor. 45, 455304 (2012).

    Article  MathSciNet  Google Scholar 

  27. Takeuchi, Y. & Morimae, T. Verification of many-qubit states. Phys. Rev. X 8, 021060 (2018).

    Google Scholar 

  28. Zhu, H. & Hayashi, M. Efficient verification of hypergraph states. Preprint at (2018).

  29. Pappa, A., Chailloux, A., Wehner, S., Diamanti, E. & Kerenidis, I. Multipartite entanglement verification resistant against dishonest parties. Phys. Rev. Lett. 108, 260502 (2012).

    Article  ADS  Google Scholar 

  30. McCutcheon, W. et al. Experimental verification of multipartite entanglement in quantum networks. Nat. Commun. 7, 13251–13258 (2016).

    Article  ADS  Google Scholar 

  31. Pallister, S., Linden, N. & Montanaro, A. Optimal verification of entangled states with local measurements. Phys. Rev. Lett. 120, 170502 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  32. Schneeloch, J., Tison, C. C., Fanto, M. L., Alsing, P. M. & Howland, G. A. Quantifying entanglement in a 68-billion dimensional quantum systems. Preprint at (2018).

  33. Barreiro, J. T. et al. Demonstration of genuine multipartite entanglement with device-independent witnesses. Nat. Phys. 9, 559–562 (2013).

    Article  Google Scholar 

  34. Dimić, A. & Dakić, B. Single-copy entanglement detection. npj Quantum Inf. 4, 11–18 (2018).

    Article  ADS  Google Scholar 

  35. Jungnitsch, B. et al. Increasing the statistical significance of entanglement detection in experiments. Phys. Rev. Lett. 104, 210401 (2010).

    Article  ADS  Google Scholar 

  36. Blume-Kohout, R. Robust error bars for quantum tomography. Preprint at (2012).

  37. Lu, C.-Y. et al. Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91–95 (2007).

    Article  Google Scholar 

  38. Hein, M., Eisert, J. & Briegel, H. J. Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  39. Gerke, S., Vogel, W. & Sperling, J. Numerical construction of multipartite entanglement witnesses. Phys. Rev. X 8, 031047 (2018).

    Google Scholar 

  40. Greganti, C. et al. Tuning single-photon sources for telecom multi-photon experiments. Opt. Express 26, 3286–3302 (2018).

    Article  ADS  Google Scholar 

  41. Broome, M. A., Almeida, M. P., Fedrizzi, A. & White, A. G. Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing. Opt. Express 19, 22698–22708 (2011).

    Article  ADS  Google Scholar 

  42. Kim, T., Fiorentino, M. & Wong, F. N. C. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. A 73, 012316 (2006).

    Article  ADS  Google Scholar 

  43. Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007).

    Article  ADS  Google Scholar 

  44. Kuzucu, O. & Wong, F. N. Pulsed Sagnac source of narrow-band polarization-entangled photons. Phys. Rev. A 77, 032314 (2008).

    Article  ADS  Google Scholar 

  45. Jin, R.-B. et al. Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength. Opt. Express 22, 11498–11507 (2014).

    Article  ADS  Google Scholar 

  46. Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001–063016 (2012).

    Article  ADS  Google Scholar 

  47. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013).

    Article  ADS  Google Scholar 

  48. Tóth, G. Entanglement witnesses in spin models. Phys. Rev. A 71, 010301 (2005).

    Article  ADS  MathSciNet  Google Scholar 

Download references


The authors thank I. Alonso Calafell for help with the detectors and T. Strömberg for helpful discussions. V.S. acknowledges support from the University of Vienna through the Vienna Doctoral School. A.D. acknowledges support from project no. ON171035 of the Serbian Ministry of Education and Science and from the scholarship awarded from The Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH). L.A.R. acknowledges support from the Templeton World Charity Foundation (fellowship no. TWCF0194). P.W. acknowledges support from the European Commission through ErBeStA (no. 800942), from the Austrian Science Fund (FWF) through CoQuS (W1210-N25), BeyondC (F7113-N38) and NaMuG (P30067-N36), the US Air Force Office of Scientific Research (FA2386-232 17-1-4011), the Austrian Research Promotion Agency (FFG) through the QuantERA ERA-NET Cofund project HiPhoP, and Red Bull. B.D. acknowledges support from the Foundational Question Institute (FQXi) grant FQXi-MGA-1806 and from an ESQ Discovery Grant of the Austrian Academy of Sciences.

Author information

Authors and Affiliations



V.S., C.G. and P.W. designed the experiment. V.S. and C.G. built the set-up. V.S. performed data analysis. L.A.R. worked on the detectors. A.D. and B.D. developed the theoretical idea. L.A.R., P.W. and B.D. supervised the project. All authors contributed to writing the paper.

Corresponding author

Correspondence to Valeria Saggio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saggio, V., Dimić, A., Greganti, C. et al. Experimental few-copy multipartite entanglement detection. Nat. Phys. 15, 935–940 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing