Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Restricted Boltzmann machines in quantum physics

A type of stochastic neural network called a restricted Boltzmann machine has been widely used in artificial intelligence applications for decades. They are now finding new life in the simulation of complex wavefunctions in quantum many-body physics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Using variational methods to learn the parameters of an RBM.
Fig. 2: Training an RBM with experimental data.

References

  1. 1.

    White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).

    ADS  Article  Google Scholar 

  2. 2.

    Sandvik, A. W. Computational studies of quantum spin systems. AIP Conf. Proc. 1297, 135–338 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Becca, F. & Sorella, S. Quantum Monte Carlo Approaches for Correlated Systems (Cambridge Univ. Press, 2017).

  4. 4.

    Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Torlai, G. et al. Integrating neural networks with a quantum simulator for state reconstruction. Preprint at https://arxiv.org/abs/1904.08441 (2019).

  7. 7.

    Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017).

    Article  Google Scholar 

  9. 9.

    Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018).

    Article  Google Scholar 

  10. 10.

    Torlai, G. & Melko, R. G. Learning thermodynamics with Boltzmann machines. Phys. Rev. B 94, 165134 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Terhal, B. M. Quantum supremacy, here we come. Nat. Phys. 14, 530–531 (2018).

    Article  Google Scholar 

  12. 12.

    Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Nguyen, H. C., Zecchina, R. & Berg, J. Inverse statistical problems: from the inverse ising problem to data science. Adv. Phys. 66, 197–261 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. A learning algorithm for Boltzmann machines. Cogn. Sci. 9, 147–169 (1985).

    Article  Google Scholar 

  15. 15.

    Smolensky, P. in Parallel Distributed Processing: Explorations in the Microstructure of Cognition Vol. 1. (eds Rumelhart, D. E. & McClelland, J. L.) 194–281 (MIT Press, 1986).

  16. 16.

    Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002).

    Article  Google Scholar 

  17. 17.

    Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Salakhutdinov, R., Mnih, A. & Hinton, G. Restricted Boltzmann machines for collaborative filtering. In Proc. 24th International Conference on Machine Learning (ed. Ghahramani, Z.) 791–798 (ACM, 2007).

  19. 19.

    Roux, N. L. & Bengio, Y. Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput. 20, 1631–1649 (2008).

    MathSciNet  Article  Google Scholar 

  20. 20.

    Orus, R. A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Vidal, G. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004).

    ADS  Article  Google Scholar 

  22. 22.

    Eisert, J., Cramer, M. & Plenio, M. B. Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Östlund, S. & Rommer, S. Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett. 75, 3537–3540 (1995).

    ADS  Article  Google Scholar 

  24. 24.

    Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many body systems in two and higher dimensions. Preprint at https://arxiv.org/abs/cond-mat/0407066 (2004).

  25. 25.

    Clark, S. R. Unifying neural-network quantum states and correlator product states via tensor networks. J. Phys. A 51, 135301 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Glasser, I., Pancotti, N., August, M., Rodriguez, I. D. & Cirac, J. I. Neural-network quantum states, string-bond states, and chiral topological states. Phys. Rev. X 8, 011006 (2018).

    Google Scholar 

  27. 27.

    Chen, J., Cheng, S., Xie, H., Wang, L. & Xiang, T. Equivalence of restricted Boltzmann machines and tensor network states. Phys. Rev. B 97, 085104 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Deng, D.-L., Li, X. & Das Sarma, S. Quantum entanglement in neural network states. Phys. Rev. X 7, 021021 (2017).

    Google Scholar 

  29. 29.

    Sfondrini, A., Cerrillo, J., Schuch, N. & Cirac, J. I. Simulating two- and three-dimensional frustrated quantum systems with string-bond states. Phys. Rev. B 81, 214426 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    Pastori, L., Kaubruegger, R. & Budich, J. C. Generalized transfer matrix states from artificial neural networks. Phys. Rev. B 99, 165123 (2019).

    ADS  Article  Google Scholar 

  31. 31.

    Salakhutdinov, R. Learning deep generative models. Ann. Rev. Stat. Appl. 2, 361–385 (2015).

    Article  Google Scholar 

  32. 32.

    Gao, X. & Duan, L.-M. Efficient representation of quantum many-body states with deep neural networks. Nat. Commun. 8, 662 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Carleo, G., Nomura, Y. & Imada, M. Constructing exact representations of quantum many-body systems with deep neural networks. Nat. Commun. 9, 5322 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Sorella, S. Green function Monte Carlo with stochastic reconfiguration. Phys. Rev. Lett. 80, 4558–4561 (1998).

    ADS  Article  Google Scholar 

  35. 35.

    Deng, D.-L., Li, X. & Das Sarma, S. Machine learning topological states. Phys. Rev. B 96, 195145 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Nomura, Y., Darmawan, A. S., Yamaji, Y. & Imada, M. Restricted Boltzmann machine learning for solving strongly correlated quantum systems. Phys. Rev. B 96, 205152 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    Saito, H. Solving the Bose–Hubbard model with machine learning. J. Phys. Soc. Jpn 86, 093001 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Luo, D. & Clark, B. K. Backflow transformations via neural networks for quantum many-body wave-functions. Preprint at https://arxiv.org/abs/1807.10770 (2018).

  39. 39.

    Han, J., Zhang, L. & E, W. Solving many-electron Schrodinger equation using deep neural networks. Preprint at https://arxiv.org/abs/1807.07014 (2018).

  40. 40.

    Teng, P. Machine-learning quantum mechanics: solving quantum mechanics problems using radial basis function networks. Phys. Rev. E 98, 033305 (2018).

    ADS  Article  Google Scholar 

  41. 41.

    Saito, H. Method to solve quantum few-body problems with artificial neural networks. J. Phys. Soc. Jpn 87, 074002 (2018).

    ADS  Article  Google Scholar 

  42. 42.

    Choo, K., Carleo, G., Regnault, N. & Neupert, T. Symmetries and many-body excitations with neural-network quantum states. Phys. Rev. Lett. 121, 167204 (2018).

    ADS  Article  Google Scholar 

  43. 43.

    Carleo, G., Becca, F., Schiro, M. & Fabrizio, M. Localization and glassy dynamics of many-body quantum systems. Sci. Rep. 2, 243 (2012).

    ADS  Article  Google Scholar 

  44. 44.

    Jónsson, B., Bauer, B. & Carleo, G. Neural-network states for the classical simulation of quantum computing. Preprint at https://arxiv.org/abs/1808.05232 (2018).

  45. 45.

    Kaubruegger, R., Pastori, L. & Budich, J. C. Chiral topological phases from artificial neural networks. Phys. Rev. B 97, 195136 (2018).

    ADS  Article  Google Scholar 

  46. 46.

    Schmitt, M. & Heyl, M. Quantum dynamics in transverse-field Ising models from classical networks. SciPost Phys. 4, 013 (2018).

    ADS  Article  Google Scholar 

  47. 47.

    Czischek, S., Gärttner, M. & Gasenzer, T. Quenches near Ising quantum criticality as a challenge for artificial neural networks. Phys. Rev. B 98, 024311 (2018).

    ADS  Article  Google Scholar 

  48. 48.

    Vieijra, T. et al. Restricted Boltzmann machines for quantum states with nonabelian or anyonic symmetries. Preprint at https://arxiv.org/abs/1905.06034 (2019).

  49. 49.

    Vogel, K. & Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989).

    ADS  Article  Google Scholar 

  50. 50.

    James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    ADS  Article  Google Scholar 

  51. 51.

    Roos, C. F. et al. Bell states of atoms with ultralong lifetimes and their tomographic state analysis. Phys. Rev. Lett. 92, 220402 (2004).

    ADS  Article  Google Scholar 

  52. 52.

    Cramer, M. et al. Efficient quantum state tomography. Nat. Commun. 1, 149 (2009).

    ADS  Article  Google Scholar 

  53. 53.

    Kim, K. et al. Quantum simulation of frustrated ising spins with trapped ions. Nature 465, 590–593 (2010).

    ADS  Article  Google Scholar 

  54. 54.

    Harris, R. et al. Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  55. 55.

    King, A. D. et al. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560, 456–460 (2018).

    ADS  Article  Google Scholar 

  56. 56.

    Hastings, M. B., González, I., Kallin, A. B. & Melko, R. G. Measuring Renyi entanglement entropy in quantum Monte Carlo simulations. Phys. Rev. Lett. 104, 157201 (2010).

    ADS  Article  Google Scholar 

  57. 57.

    Torlai, G. & Melko, R. G. Latent space purification via neural density operators. Phys. Rev. Lett. 120, 240503 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  58. 58.

    Rocchetto, A., Grant, E., Strelchuk, S., Carleo, G. & Severini, S. Learning hard quantum distributions with variational autoencoders. npj Quantum Inf. 4, 28 (2018).

    ADS  Article  Google Scholar 

  59. 59.

    Goodfellow, I. NIPS 2016 tutorial: generative adversarial networks. Preprint at https://arxiv.org/abs/1701.00160 (2016).

  60. 60.

    Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at https://arxiv.org/abs/1312.6114 (2013).

  61. 61.

    van den Oord, A., Kalchbrenner, N. & Kavukcuoglu, K. Pixel recurrent neural networks. Preprint at https://arxiv.org/abs/1601.06759 (2016).

  62. 62.

    Carrasquilla, J., Torlai, G., Melko, R. G. & Aolita, L. Reconstructing quantum states with generative models. Nat. Mach. Intell. 1, 155–161 (2019).

    Article  Google Scholar 

  63. 63.

    Sharir, O., Levine, Y., Wies, N., Carleo, G. & Shashua, A. Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Preprint at https://arxiv.org/abs/1902.04057 (2019).

  64. 64.

    Goodfellow, I. et al. in Advances in Neural Information Processing Systems Vol. 27 (eds Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q.) 2672–2680 (Curran Associates, 2014).

Download references

Acknowledgements

We thank G. Torlai, A. Rocchetto and M. Albergo for fruitful discussions. This research was supported by NSERC of Canada, the Perimeter Institute for Theoretical Physics, the Shared Hierarchical Academic Research Computing Network (SHARCNET) and the National Science Foundation under grant no. PHY-1748958. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Economic Development, Job Creation and Trade. R.G.M. acknowledges support from a Canada Research Chair. J.C. acknowledges financial and computational support from the AI grant. J.I.C. was funded from the European Research Council (grant agreement no. 742102).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roger G. Melko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melko, R.G., Carleo, G., Carrasquilla, J. et al. Restricted Boltzmann machines in quantum physics. Nat. Phys. 15, 887–892 (2019). https://doi.org/10.1038/s41567-019-0545-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing