Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polaron spin dynamics in high-mobility polymeric semiconductors

Abstract

Polymeric semiconductors exhibit exceptionally long spin lifetimes, and recently observed micrometre spin diffusion lengths in conjugated polymers demonstrate the potential for organic spintronics devices. Weak spin–orbit and hyperfine interactions lie at the origin of their long spin lifetimes, but the coupling mechanism of a spin to its environment remains elusive. Here, we present a systematic study of polaron spin lifetimes in field-effect transistors with high-mobility conjugated polymers as an active layer. We demonstrate how spin relaxation is governed by the charges’ hopping motion at low temperatures, whereas an Elliott–Yafet-like relaxation due to a transient localization of the carrier wavefunctions is responsible for spin relaxation at high temperatures. In this regime, charge, spin and structural dynamics are intimately related and depend sensitively on the local conformation of polymer backbones and the crystalline packing of the polymer chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IDTBT field-induced ESR devices.
Fig. 2: Relaxation processes in IDTBT.
Fig. 3: Modelling of IDTBT spin dynamics.
Fig. 4: Spin lifetimes of field-induced charges.
Fig. 5: Spin admixtures.

Similar content being viewed by others

Data availability

The data underlying this publication are available on the University of Cambridge data repository at https://doi.org/10.17863/CAM.34786.

Code availability

The CustomXepr source code is published at https://github.com/OE-FET/CustomXepr.

References

  1. Di, D. et al. High-performance light-emitting diodes based on carbene–metal-amides. Science 356, 159–163 (2017).

    Article  ADS  Google Scholar 

  2. Weiss, L. R. et al. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13, 176–181 (2017).

    Article  Google Scholar 

  3. Rao, A. & Friend, R. H. Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nat. Rev. Mater. 2, 17063–12 (2017).

    Article  ADS  Google Scholar 

  4. Wagemans, W. & Koopmans, B. Spin transport and magnetoresistance in organic semiconductors. Phys. Status Solidi B 248, 1029–1041 (2011).

    Article  ADS  Google Scholar 

  5. Wohlgenannt, M. Organic magnetoresistance and spin diffusion in organic semiconductor thin film devices. Phys. Status Solidi Rapid. Res. Lett. 6, 229–242 (2012).

    Article  ADS  Google Scholar 

  6. Watanabe, S. et al. Polaron spin current transport in organic semiconductors. Nat. Phys. 10, 308–313 (2014).

    Article  Google Scholar 

  7. Wang, S.-J. et al. Long spin diffusion lengths in doped conjugated polymers due to enhanced exchange coupling. Nat. Electron. 2, 98–107 (2019).

    Article  Google Scholar 

  8. Ando, K., Watanabe, S., Mooser, S., Saitoh, E. & Sirringhaus, H. Solution-processed organic spin–charge converter. Nat. Mater. 12, 622–627 (2013).

    Article  ADS  Google Scholar 

  9. Sun, D. et al. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin–orbit coupling. Nat. Mater. 15, 863–869 (2016).

    Article  ADS  Google Scholar 

  10. Sanvito, S. The rise of spinterface science. Nat. Phys. 6, 562–564 (2010).

    Article  Google Scholar 

  11. Shao, M. et al. The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nat. Commun. 5, 3180 (2014).

    Article  ADS  Google Scholar 

  12. Steyrleuthner, R. et al. Impact of morphology on polaron delocalization in a semicrystalline conjugated polymer. Phys. Chem. Chem. Phys. 19, 3627–3639 (2017).

    Article  Google Scholar 

  13. Schott, S. et al. Tuning the effective spin–orbit coupling in molecular semiconductors. Nat. Commun. 8, 15200 (2017).

    Article  ADS  Google Scholar 

  14. McNellis, E. R., Schott, S., Sirringhaus, H. & Sinova, J. Molecular tuning of the magnetic response in organic semiconductors. Phys. Rev. Mater. 2, 074405 (2018).

    Article  Google Scholar 

  15. Matsui, H., Hasegawa, T., Tokura, Y., Hiraoka, M. & Yamada, T. Polaron motional narrowing of electron spin resonance in organic field-effect transistors. Phys. Rev. Lett. 100, 126601 (2008).

    Article  ADS  Google Scholar 

  16. Matsui, H., Mishchenko, A. S. & Hasegawa, T. Distribution of localized states from fine analysis of electron spin resonance spectra in organic transistors. Phys. Rev. Lett. 104, 056602 (2010).

    Article  ADS  Google Scholar 

  17. Marumoto, K. et al. Microscopic mechanisms behind the high mobility in rubrene single-crystal transistors as revealed by field-induced electron spin resonance. Phys. Rev. B 83, 075302 (2011).

    Article  ADS  Google Scholar 

  18. Matsui, H. et al. Correlation between interdomain carrier hopping and apparent mobility in polycrystalline organic transistors as investigated by electron spin resonance. Phys. Rev. B 85, 035308 (2012).

    Article  ADS  Google Scholar 

  19. Tsurumi, J. et al. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. Nat. Phys. 13, 994–998 (2017).

    Article  Google Scholar 

  20. Harmon, N. J. & Flatté, M. E. Distinguishing spin relaxation mechanisms in organic semiconductors. Phys. Rev. Lett. 110, 176602 (2013).

    Article  ADS  Google Scholar 

  21. Yu, Z. G., Ding, F. & Wang, H. Hyperfine interaction and its effects on spin dynamics in organic solids. Phys. Rev. B 87, 205446 (2013).

    Article  ADS  Google Scholar 

  22. Yu, Z. G. Spin–orbit coupling, spin relaxation, and spin diffusion in organic solids. Phys. Rev. Lett. 106, 106602 (2011).

    Article  ADS  Google Scholar 

  23. Yu, Z. G. Spin–orbit coupling and its effects in organic solids. Phys. Rev. B 85, 115201 (2012).

    Article  ADS  Google Scholar 

  24. Yu, Z. G. Microscopic theory of electron spin relaxation in N@C60. Phys. Rev. B 77, 821–826 (2008).

    Google Scholar 

  25. Xiong, Z. H., Wu, D., Valy Vardeny, Z. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  ADS  Google Scholar 

  26. Pramanik, S. et al. Observation of extremely long spin relaxation times in an organic nanowire spin valve. Nat. Nanotechnol. 2, 216–219 (2007).

    Article  ADS  Google Scholar 

  27. Shim, J. H. et al. Large spin diffusion length in an amorphous organic semiconductor. Phys. Rev. Lett. 100, 226603 (2008).

    Article  ADS  Google Scholar 

  28. Mooser, S., Cooper, J. F. K., Banger, K. K., Wunderlich, J. & Sirringhaus, H. Spin injection and transport in a solution-processed organic semiconductor at room temperature. Phys. Rev. B 85, 235202 (2012).

    Article  ADS  Google Scholar 

  29. Jiang, S. W. et al. Exchange-dominated pure spin current transport in Alq3 molecules. Phys. Rev. Lett. 115, 086601 (2015).

    Article  ADS  Google Scholar 

  30. McCamey, D. R. et al. Hyperfine-field-mediated spin beating in electrostatically bound charge carrier pairs. Phys. Rev. Lett. 104, 13–14 (2010).

    Article  Google Scholar 

  31. Nguyen, T. D., Gautam, B. R., Ehrenfreund, E. & Vardeny, Z. V. Magnetoconductance response in unipolar and bipolar organic diodes at ultrasmall fields. Phys. Rev. Lett. 105, 166804 (2010).

    Article  ADS  Google Scholar 

  32. Szulczewski, G., Sanvito, S. & Coey, M. A spin of their own. Nat. Mater. 8, 693–695 (2009).

    Article  ADS  Google Scholar 

  33. Grünewald, M. et al. Tunneling anisotropic magnetoresistance in organic spin valves. Phys. Rev. B 84, 125208 (2011).

    Article  ADS  Google Scholar 

  34. Grünewald, M. et al. Vertical organic spin valves in perpendicular magnetic fields. Phys. Rev. B 88, 085319 (2013).

    Article  ADS  Google Scholar 

  35. Wid, O. et al. Investigation of the unidirectional spin heat conveyer effect in a 200 nm thin yttrium iron garnet film. Sci. Rep. 6, 28233 (2016).

    Article  ADS  Google Scholar 

  36. Li, L., Lu, N., Liu, M. & Bässler, H. General Einstein relation model in disordered organic semiconductors under quasiequilibrium. Phys. Rev. B 90, 214107 (2014).

    Article  ADS  Google Scholar 

  37. Wetzelaer, G. A. H., Koster, L. J. A. & Blom, P. W. M. Validity of the Einstein relation in disordered organic semiconductors. Phys. Rev. Lett. 107, 066605 (2011).

    Article  ADS  Google Scholar 

  38. Yu, Z. G. Suppression of the Hanle effect in organic spintronic devices. Phys. Rev. Lett. 111, 016601 (2013).

    Article  ADS  Google Scholar 

  39. Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    Article  ADS  Google Scholar 

  40. Gruber, M. et al. Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering. Chem. Sci. 6, 6949–6960 (2015).

    Article  Google Scholar 

  41. Schott, S. et al. Charge-transport anisotropy in a uniaxially aligned diketopyrrolopyrrole-based copolymer. Adv. Mater. 27, 7356–7364 (2015).

    Article  Google Scholar 

  42. Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    Article  ADS  Google Scholar 

  43. Abragam, A. The Principles of Nuclear Magnetism (Oxford University Press, 1961).

  44. Redfield, A. G. On the theory of relaxation processes. IBM J. Res. Dev. 1, 19–31 (1957).

    Article  Google Scholar 

  45. Slichter, C. P. Principles of Magnetic Resonance (Springer, 2013).

  46. Mishchenko, A. S., Matsui, H. & Hasegawa, T. Distribution of localized states from fine analysis of electron spin resonance spectra of organic semiconductors: physical meaning and methodology. Phys. Rev. B 85, 085211 (2012).

    Article  ADS  Google Scholar 

  47. Baker, W. J., Keevers, T. L., Lupton, J. M., McCamey, D. R. & Boehme, C. Slow hopping and spin dephasing of coulombically bound polaron pairs in an organic semiconductor at room temperature. Phys. Rev. Lett. 108, 267601 (2012).

    Article  ADS  Google Scholar 

  48. Zhang, X. et al. Molecular origin of high field-effect mobility in an indacenodithiophene–benzo-thiadiazole copolymer. Nat. Commun. 4, 2238 (2013).

    Article  ADS  Google Scholar 

  49. Liu, T. & Troisi, A. Understanding the microscopic origin of the very high charge mobility in PBTTT: tolerance of thermal disorder. Adv. Funct. Mater. 24, 925–933 (2013).

    Article  Google Scholar 

  50. Fornari, R. P. & Troisi, A. Theory of charge hopping along a disordered polymer chain. Phys. Chem. Chem. Phys. 16, 9997–10007 (2014).

    Article  Google Scholar 

  51. Vezie, M. S. et al. Exploring the origin of high optical absorption in conjugated polymers. Nat. Mater. 15, 746–753 (2016).

    Article  ADS  Google Scholar 

  52. Kang, K. et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15, 896–902 (2016).

    Article  ADS  Google Scholar 

  53. Fujimoto, R. et al. Molecular doping in organic semiconductors: fully solution-processed, vacuum-free doping with metal–organic complexes in an orthogonal solvent. J. Mater. Chem. C. 5, 12023–12030 (2017).

    Article  Google Scholar 

  54. Marcon, V. et al. Understanding structure–mobility relations for perylene tetracarboxydiimide derivatives. J. Am. Chem. Soc. 131, 11426–11432 (2009).

    Article  Google Scholar 

  55. May, F., Marcon, V., Hansen, M. R., Grozema, F. & Andrienko, D. Relationship between supramolecular assembly and charge-carrier mobility in perylenediimide derivatives: the impact of side chains. J. Mater. Chem. 21, 9538–9545 (2011).

    Article  Google Scholar 

  56. Anderson, M. et al. Displacement of polarons by vibrational modes in doped conjugated polymers. Phys. Rev. Mater. 1, 055604–055609 (2017).

    Article  Google Scholar 

  57. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

    Article  ADS  Google Scholar 

  58. Di Pietro, R. et al. Coulomb enhanced charge transport in semicrystalline polymer semiconductors. Adv. Funct. Mater. 26, 8011–8022 (2016).

    Article  Google Scholar 

  59. Statz, M. et al. On the manifestation of electron–electron interactions in the thermoelectric response of semicrystalline conjugated polymers with low energetic disorder. Commun. Phys. 1, 1319 (2018).

    Article  Google Scholar 

  60. DeLongchamp, D. M. et al. Controlling the orientation of terraced nanoscale ‘ribbons’ of a poly(thiophene) semiconductor. ACS Nano 3, 780–787 (2009).

    Article  Google Scholar 

  61. Wang, C. et al. Microstructural origin of high mobility in high-performance poly(thieno-thiophene) thin-film transistors. Adv. Mater. 22, 697–701 (2010).

    Article  Google Scholar 

  62. Schuettfort, T. et al. Microstructure of polycrystalline pBTTT films: domain mapping and structure formation. ACS Nano 6, 1849–1864 (2012).

    Article  Google Scholar 

  63. Beljonne, D. et al. Optical signature of delocalized polarons in conjugated polymers. Adv. Funct. Mater. 11, 229–234 (2001).

    Article  Google Scholar 

  64. Chew, A. R. et al. Unraveling the effect of conformational and electronic disorder in the charge transport processes of semiconducting polymers. Adv. Funct. Mater. 28, 1804142 (2018).

    Article  Google Scholar 

  65. Fratini, S., Mayou, D. & Ciuchi, S. The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26, 2292–2315 (2016).

    Article  Google Scholar 

  66. Lemaur, V. et al. On the supramolecular packing of high electron mobility naphthalene diimide copolymers: the perfect registry of asymmetric branched alkyl side chains. Macromolecules 46, 8171–8178 (2013).

    Article  ADS  Google Scholar 

  67. Kronemeijer, A. J. et al. Two-dimensional carrier distribution in top-gate polymer field-effect transistors: correlation between width of density of localized states and Urbach energy. Adv. Mater. 26, 728–733 (2014).

    Article  Google Scholar 

  68. Nikolka, M. et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 16, 356–362 (2016).

    Article  ADS  Google Scholar 

  69. Lu, G. et al. Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nat. Commun. 4, 1588 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding from ERC Synergy grant SC2 (no. 610115), the Alexander von Humboldt Foundation and the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X is acknowledged. S.S. thanks the Winton Programme for the Physics of Sustainability and the Engineering and Physical Sciences Research Council (EPSRC) for funding as well as Z.-G. Yu for discussions, R. Chakalov for assistance with sample fabrication and S.-i. Kuroda, H. Tanaka and S. Watanabe for training and discussions. U.C. is a recipient of a DFG-funded position through the Excellence Initiative by the Graduate School Materials Science in Mainz (GSC 266). The work in Mons was supported by the European Commission/Région Wallonne (FEDER–BIORGEL project), the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds National de la Recherche Scientifique (FRS-FNRS) under grant no. 2.5020.11 as well as the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under grant agreement n1117545, and FRS-FNRS. D.B. is FNRS Research Director. This research was undertaken in part on the SAXS/WAXS beamline at the Australian Synchrotron, part of ANSTO.

Author information

Authors and Affiliations

Authors

Contributions

S.S. fabricated the FI-ESR devices and carried out the ESR experiments and analyses. R.L.C. performed the Raman measurements. R.D.P. developed the methods to tune the crystallinity of p(NDI2O–T2) and helped with both the fabrication of samples and the interpretation of results. X.J. and C.R.M. carried out the GIWAXS measurements and analysed the GIWAXS data. I.R. carried out and analysed the Hall effect measurements. U.C. and E.R.M. performed the calculation and analyses of spin admixtures. A.Melnyk and D.A. carried out the simulations of dynamic disorder in IDTBT. Y.O., V.L. and D.B. performed the calculations of torsional autocorrelation functions and intra-chain spin density dynamics. C.J., M.L., A.Marks and I.M. synthesized the materials. S.S. and H.S. wrote the manuscript with input from all authors. H.S. and J.S. supervised the project. All authors discussed the results.

Corresponding author

Correspondence to Henning Sirringhaus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Z. Valy Vardeny, Zhi-Gang Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

16 Figures, 1 Table, 60 References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schott, S., Chopra, U., Lemaur, V. et al. Polaron spin dynamics in high-mobility polymeric semiconductors. Nat. Phys. 15, 814–822 (2019). https://doi.org/10.1038/s41567-019-0538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0538-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing