Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum simulation of Unruh radiation

Abstract

The exploration of quantum phenomena in a curved spacetime is an emerging interdisciplinary area at the interface between general relativity1,2,3,4, thermodynamics4,5,6 and quantum information7,8. One famous prediction in this field is Unruh thermal radiation3—the manifestation of thermal radiation from a Minkowski vacuum when viewed in an accelerating reference frame. Here, we report the experimental observation of a matter field with thermal fluctuations that agree with Unruh’s predictions. The matter field is generated within a framework for the simulation of quantum physics in a non-inertial frame, based on Bose–Einstein condensates that are parametrically modulated9 to make their evolution replicate the frame transformation. We further observe long-range phase coherence and temporal reversal of the matter-wave radiation, hallmarks that distinguish Unruh radiation from its classical counterpart. Our demonstration offers a new avenue for the investigation of the dynamics of quantum many-body systems in a curved spacetime.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quantum simulation of Unruh radiation.
Fig. 2: Thermal behaviour of the matter-wave emission.
Fig. 3: Long-range phase correlation of matter-wave radiation.
Fig. 4: Time reversal of the matter-wave radiation field.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Hawking, S. W. Black hole explosions? Nature 248, 30–31 (1974).

    ADS  Article  Google Scholar 

  2. 2.

    Hawking, S. W. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Unruh, W. G. Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976).

    ADS  Article  Google Scholar 

  4. 4.

    Wald, R. M. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, 1994).

  5. 5.

    Bekenstein, J. D. Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Hawking, S. W. Black holes and thermodynamics. Phys. Rev. D 13, 191–197 (1976).

    ADS  Article  Google Scholar 

  7. 7.

    Hayden, P. & Preskill, J. Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 2007, 120 (2007).

    MathSciNet  Article  Google Scholar 

  8. 8.

    Giddings, S. B. Black holes, quantum information, and the foundations of physics. Phys. Today 66, 30 (2013).

    Article  Google Scholar 

  9. 9.

    Clark, L. W., Gaj, A., Feng, L. & Chin, C. Collective emission of matter-wave jets from driven Bose-Einstein condensates. Nature 551, 356–359 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Maldacena, J. The large n limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 213–252 (2018).

    MathSciNet  Google Scholar 

  11. 11.

    Hawking, S. W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Susskind, L. The paradox of quantum black holes. Nat. Phys. 2, 665–677 (2006).

    Article  Google Scholar 

  13. 13.

    Almheiri, A., Marolf, D., Polchinski, J. & Sully, J. Black holes: complementarity or firewalls? J. High Energy Phys. 2013, 62 (2013).

    MathSciNet  Article  Google Scholar 

  14. 14.

    Su, D., Ho, C. T. M., Mann, R. B. & Ralph, T. C. Quantum circuit model for non-inertial objects: a uniformly accelerated mirror. New J. Phys. 19, 063017 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Nguyen, J. H. V. et al. Parametric excitation of a Bose-Einstein condensate: from Faraday waves to granulation. Phys. Rev. X 9, 011052 (2019).

    Google Scholar 

  17. 17.

    Feng, L., Hu, J., Clark, L. W. & Chin, C. Correlations in high-harmonic generation of matter-wave jets revealed by pattern recognition. Science 363, 521–524 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    Langen, T., Geiger, R., Kuhnert, M., Rauer, B. & Schmiedmayer, J. Local emergence of thermal correlations in an isolated quantum many-body system. Nat. Phys. 9, 640–643 (2013).

    Article  Google Scholar 

  19. 19.

    Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).

    ADS  Article  Google Scholar 

  20. 20.

    Zheng, Y., Ren, H., Wan, W. & Chen, X. Time-reversed wave mixing in nonlinear optics. Sci. Rep. 3, 3245 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Linnemann, D. et al. Quantum-enhanced sensing based on time reversal of nonlinear dynamics. Phys. Rev. Lett. 117, 013001 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Linnemann, D. et al. Active SU(1,1) atom interferometry. Quantum Sci. Technol. 2, 044009 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Sonic analog of gravitational black holes in Bose-Einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000).

    ADS  Article  Google Scholar 

  24. 24.

    Schützhold, R. & Unruh, W. G. Hawking radiation in an electromagnetic waveguide. Phys. Rev. Lett. 95, 031301 (2005).

    ADS  Article  Google Scholar 

  25. 25.

    Horstmann, B., Reznik, B., Fagnocchi, S. & Cirac, J. I. Hawking radiation from an acoustic black hole on an ion ring. Phys. Rev. Lett. 104, 250403 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Bekenstein, R., Schley, R., Mutzafi, M., Rotschild, C. & Segev, M. Optical simulations of gravitational effects in the Newton-Schrödinger system. Nat. Phys. 11, 872–878 (2015).

    Article  Google Scholar 

  27. 27.

    Steinhauer, J. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 12, 959–965 (2016).

    Article  Google Scholar 

  28. 28.

    Rodríguez-Laguna, J., Tarruell, L., Lewenstein, M. & Celi, A. Synthetic Unruh effect in cold atoms. Phys. Rev. A 95, 013627 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Feng, L., Clark, L. W., Gaj, A. & Chin, C. Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point. Nat. Phys. 14, 269–272 (2018).

    Article  Google Scholar 

  30. 30.

    Wang, X.-B., Hiroshima, T., Tomita, A. & Hayashi, M. Quantum information with gaussian states. Phys. Rep. 448, 1–111 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Clark, L. W. et al. Observation of density-dependent gauge fields in a Bose-Einstein condensate based on micromotion control in a shaken two-dimensional lattice. Phys. Rev. Lett. 121, 030402 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. M. Wald, N. D. Gemelke and L. W. Clark for helpful discussions and reading the manuscript. We thank K. Levin’s group for providing the numerical solver. We thank F. Fung for graphics preparation. L.F. acknowledges support from an MRSEC-funded graduate research fellowship. This work is supported by National Science Foundation (NSF) grant no. PHY-1511696, the Army Research Office Multidisciplinary Research Initiative under grant W911NF-14-1-0003 and the University of Chicago Materials Research Science and Engineering Center, which is funded by the NSF under grant no. DMR-1420709.

Author information

Affiliations

Authors

Contributions

J.H. proposed this idea. J.H., L.F. and Z.Z. performed the experiments, built the theoretical model and analysed the data. C.C. supervised the work. All the authors contributed to discussing the results and writing the manuscript.

Corresponding author

Correspondence to Jiazhong Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Giovanni Modugno and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Feng, L., Zhang, Z. et al. Quantum simulation of Unruh radiation. Nat. Phys. 15, 785–789 (2019). https://doi.org/10.1038/s41567-019-0537-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing