Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Kondo screening in a charge-insulating spinon metal

An Author Correction to this article was published on 18 July 2019

This article has been updated

Abstract

The Kondo effect, an eminent manifestation of many-body physics in condensed matter, is traditionally explained as exchange scattering of conduction electrons on a spinful impurity in a metal1,2. The resulting screening of the impurity’s local moment by the electron Fermi sea is characterized by a Kondo temperature TK, below which the system enters a strongly coupled regime. In recent years, this effect has found realizations beyond the bulk-metal paradigm in many other conduction-electron systems, such as in quantum dots in semiconductor heterostructures3,4 and nanomaterials5,6,7, in quantum point contacts8,9, in graphene10,11 and in topological insulators12, and has also been predicted for three-dimensional Dirac and Weyl semimetals13. Here, we report an experimental observation of Kondo screening by charge-neutral quasiparticles. This occurs in a charge-insulating quantum spin liquid, where spinon excitations forming a Fermi surface take the role of conduction electrons. The observed impurity behaviour therefore bears a strong resemblance to the conventional case in a metal. The discovered spinon-based Kondo effect provides a prominent platform for characterizing spin liquids in the general context of utilizing impurities as in situ probes of host electron states14,15, and offers a unique way to manipulate these enigmatic states.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Phase diagram of Zn-brochantite.
Fig. 2: Static μSR signature of the Kondo effect.
Fig. 3: Dynamical μSR signature of the Kondo effect.

Data availability

The data that support the findings of this study are available via https://doi.org/10.15128/r241687h44k or from the corresponding author upon reasonable request.

Change history

  • 18 July 2019

    In the Supplementary Information initially published online for this Letter, the x axis labels were missing in Supplementary Fig. 5a–c; they should have been ‘t (μs)’, ‘ν (MHz)’ and ‘t (μs)’, respectively. These labels have now been added.

References

  1. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    ADS  Article  Google Scholar 

  2. Hewson, A. C The Kondo Problem to Heavy Fermions (Cambridge University Press, 1997).

  3. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    ADS  Article  Google Scholar 

  4. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998).

    ADS  Article  Google Scholar 

  5. Nygård, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

    ADS  Article  Google Scholar 

  6. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    ADS  Article  Google Scholar 

  7. Yu, L. H. & Natelson, D. The Kondo effect in C60 single-molecule transistors. Nano Lett. 4, 79–83 (2004).

    ADS  Article  Google Scholar 

  8. Cronenwett, S. M. et al. Low-temperature fate of the 0.7 structure in a point contact: a Kondo-like correlated state in an open system. Phys. Rev. Lett. 88, 226805 (2002).

    ADS  Article  Google Scholar 

  9. Iqbal, M. J. et al. Odd and even Kondo effects from emergent localization in quantum point contacts. Nature 501, 79–83 (2013).

    ADS  Article  Google Scholar 

  10. Chen, J.-H., Li, L., Cullen, W. G., Williams, E. D. & Fuhrer, M. S. Tunable Kondo effect in graphene with defects. Nat. Phys. 7, 535–538 (2011).

    Article  Google Scholar 

  11. Fritz, L. & Vojta, M. The physics of Kondo impurities in graphene. Rep. Prog. Phys. 76, 032501 (2013).

    ADS  Article  Google Scholar 

  12. Cha, J. J. et al. Magnetic doping and Kondo effect in Bi2Se3 nanoribbons. Nano Lett. 10, 1076–1081 (2010).

    ADS  Article  Google Scholar 

  13. Mitchell, A. K. & Fritz, L. Kondo effect in three-dimensional Dirac and Weyl systems. Phys. Rev. B 92, 121109(R) (2015).

    ADS  Article  Google Scholar 

  14. Alloul, H., Bobroff, J., Gabay, M. & Hirschfeld, P. J. Defects in correlated metals and superconductors. Rev. Mod. Phys. 81, 45–108 (2009).

    ADS  Article  Google Scholar 

  15. Balatsky, A. V., Vekhter, I. & Zhu, J.-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    ADS  Article  Google Scholar 

  16. Khaliullin, G. & Fulde, P. Magnetic impurity in a system of correlated electrons. Phys. Rev. B 52, 9514–9519 (1995).

    ADS  Article  Google Scholar 

  17. Kolezhuk, A., Sachdev, S., Biswas, R. R. & Chen, P. Theory of quantum impurities in spin liquids. Phys. Rev. B 74, 165114 (2006).

    ADS  Article  Google Scholar 

  18. Ribeiro, P. & Lee, P. A. Magnetic impurity in a U(1) spin liquid with a spinon Fermi surface. Phys. Rev. B 83, 235119 (2011).

    ADS  Article  Google Scholar 

  19. Dhochak, K., Shankar, R. & Tripathi, V. Magnetic impurities in the honeycomb Kitaev model. Phys. Rev. Lett. 105, 117201 (2010).

    ADS  Article  Google Scholar 

  20. Vojta, M., Mitchell, A. K. & Zschocke, F. Kondo impurities in the Kitaev spin liquid: numerical renormalization group solution and gauge-flux-driven screening. Phys. Rev. Lett. 117, 037202 (2016).

    ADS  Article  Google Scholar 

  21. Li, Y. et al. Gapless quantum spin liquid in the S = 1/2 anisotropic kagome antiferromagnet ZnCu3(OH)6SO4. New J. Phys. 16, 093011 (2014).

    Article  Google Scholar 

  22. Norman, M. R. Colloquium: Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  23. Gomilšek, M. et al. Instabilities of spin-liquid states in a quantum kagome antiferromagnet. Phys. Rev. B 93, 060405(R) (2016).

    ADS  Article  Google Scholar 

  24. Gomilšek, M. et al. μSR insight into the impurity problem in quantum kagome antiferromagnets. Phys. Rev. B 94, 024438 (2016).

    ADS  Article  Google Scholar 

  25. Kimchi, I., Nahum, A. & Senthil, T. Valence bonds in random quantum magnets: theory and application to YbMgGaO4. Phys. Rev. X 8, 031028 (2018).

    Google Scholar 

  26. Mydosh, J. A. Spin glasses: redux: an updated experimental/materials survey. Rep. Prog. Phys. 78, 052501 (2015).

    ADS  Article  Google Scholar 

  27. Žitko, R. in Physical Properties of Nanosystems (ed. Bonča, J.) 247–257 (Springer, 2011).

  28. Costi, T. A. Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys. Phys. Rev. Lett. 85, 1504–1507 (2000).

    ADS  Article  Google Scholar 

  29. Abragam, A. The Principles of Nuclear Magnetism (Oxford University Press, 1961).

  30. Gomilšek, M. et al. Field-induced instability of a gapless spin liquid with a spinon Fermi surface. Phys. Rev. Lett. 119, 137205 (2017).

    ADS  Article  Google Scholar 

  31. Kretinin, A. V. et al. Spin-1/2 Kondo effect in an InAs nanowire quantum dot: unitary limit, conductance scaling and Zeeman splitting. Phys. Rev. B 84, 245316 (2011).

    ADS  Article  Google Scholar 

  32. Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: possible application to κ-(ET)2Cu2(CN)3. Phys. Rev. B 73, 155115 (2006).

    ADS  Article  Google Scholar 

  33. Colbert, J. R., Drew, H. D. & Lee, P. A. Magneto-optical Faraday effect in spin-liquid candidates. Phys. Rev. B 90, 121105(R) (2014).

    ADS  Article  Google Scholar 

  34. Gao, Y. H. & Chen, G. Topological thermal Hall effect for topological excitations in spin liquid: emergent Lorentz force on the spinons. Preprint at https://arxiv.org/abs/1901.01522 (2019).

  35. Metlitski, M. A., Mross, D. F., Sachdev, S. & Senthil, T. Cooper pairing in non-Fermi liquids. Phys. Rev. B 91, 115111 (2015).

    ADS  Article  Google Scholar 

  36. Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    ADS  Article  Google Scholar 

  37. Paddison, J. A. M. et al. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4. Nat. Phys. 13, 117–122 (2017).

    Article  Google Scholar 

  38. Klanjšek, M. et al. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130–1134 (2017).

    Article  Google Scholar 

  39. Janša, N. et al. Observation of two types of fractional excitation in the Kitaev honeycomb magnet. Nat. Phys. 14, 786–790 (2018).

    Article  Google Scholar 

  40. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  41. Yaouanc, A. & Réotier, De, P. D. Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter (Oxford University Press, 2011).

  42. Wilson, K. G. The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).

    ADS  MathSciNet  Article  Google Scholar 

  43. Žitko, R. & Pruschke, T. Energy resolution and discretization artefacts in the numerical renormalization group. Phys. Rev. B 79, 085106 (2009).

    ADS  Article  Google Scholar 

  44. Weichselbaum, A. & von Delft, J. Sum-rule conserving spectral functions from the numerical renormalization group. Phys. Rev. Lett. 99, 076402 (2007).

    ADS  Article  Google Scholar 

  45. Höck, M. & Schnack, J. Numerical renormalization group calculations of the magnetization of Kondo impurities with and without uniaxial anisotropy. Phys. Rev. B 87, 184408 (2013).

    ADS  Article  Google Scholar 

  46. Lin, C. L., Wallash, A., Crow, J. E., Mihalisin, T. & Schlottmann, P. Heavy-fermion behavior and the single-ion Kondo model. Phys. Rev. Lett. 58, 1232–1235 (1987).

    ADS  Article  Google Scholar 

  47. Kusminskiy, V. S., Beach, A., Castro Neto, K. & Campbell, D. Mean-field study of the heavy-fermion metamagnetic transition. Phys. Rev. B 77, 094419 (2008).

    ADS  Article  Google Scholar 

  48. Golež, D. & Žitko, R. Lifshitz phase transitions in the ferromagnetic regime of the Kondo lattice model. Phys. Rev. B 88, 054431 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with T. Lancaster and D. Manevski. This work is partially based on experiments performed at the Swiss Muon Source SμS, Paul Scherrer Institute, Villigen, Switzerland. Financial support of the Slovenian Research Agency under programmes P1-0125 and P1-0044 and project no. J1-7259 is acknowledged. M.G. is grateful to EPSRC (UK) for financial support (grant no. EP/N024028/1). Q.M.Z. was supported by the Ministry of Science and Technology of China (2016YFA0300504 and 2017YFA0302904) and the NSF of China (11774419 and 11474357).

Author information

Authors and Affiliations

Authors

Contributions

A.Z. conceived, designed and supervised the project. M.G. and A.Z. performed the μSR measurements, with technical assistance from C.B., and analysed the data. R.Ž. carried out the NRG calculations. M.G. developed the percolation-theory-based model for the spin of impurity clusters. Y.L. and Q.M.Z. synthesized and characterized the sample. All authors discussed the results. A.Z. wrote the paper with feedback from all the authors.

Corresponding author

Correspondence to A. Zorko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Peter Baker and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figs. 1–7 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomilšek, M., Žitko, R., Klanjšek, M. et al. Kondo screening in a charge-insulating spinon metal. Nat. Phys. 15, 754–758 (2019). https://doi.org/10.1038/s41567-019-0536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0536-2

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing