Universal optical control of chiral superconductors and Majorana modes


Chiral superconductors are a class of unconventional superconductors that host topologically protected chiral Majorana fermions at interfaces and domain walls1,2,3, quasiparticles4,5,6 that could serve as a platform for topological quantum computing7. Here we show that, in analogy to a qubit, the out-of-equilibrium superconducting state in such materials can be described by a Bloch vector and predict that they can be controlled on ultrafast timescales. The all-optical control mechanism is universal, permitting arbitrary rotations of the order parameter, and can induce a dynamical change of handedness of the condensate. It relies on transient breaking of crystal symmetries via choice of pulse polarization to enable arbitrary rotations of the Bloch vector. The mechanism extends to ultrafast timescales and the engineered state persists after the pump is switched off. We predict that these phenomena should appear in graphene8,9,10 or magic-angle twisted bilayer graphene11,12,13,14, as well as Sr2RuO4 (refs. 15,16). Furthermore, we show that chiral superconductivity can be detected in time-resolved pump–probe measurements. This paves the way towards a robust mechanism for ultrafast control and measurement of chirally ordered phases and Majorana modes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Driven chiral superconductors and dynamical symmetry breaking of two-component order parameters.
Fig. 2: Ultrafast control of the chirality of the superconducting order parameter.
Fig. 3: Universal control of chiral superconductors.
Fig. 4: Pump–probe measurement of order parameter dynamics.

Data availability

All data generated and analysed during this study are available from the corresponding author upon request.


  1. 1.

    Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    ADS  Article  Google Scholar 

  2. 2.

    Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    ADS  Article  Google Scholar 

  3. 3.

    Kallin, C. & Berlinsky, J. Chiral superconductors. Rep. Prog. Phys. 79, 054502 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Elliott, S. R. & Franz, M. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137–163 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Black-Schaffer, A. M. & Doniach, S. Resonating valence bonds and mean-field d-wave superconductivity in graphite. Phys. Rev. B 75, 134512 (2006).

    ADS  Article  Google Scholar 

  9. 9.

    Nandkishore, R., Levitov, L. & Chubukov, A. Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2011).

    Article  Google Scholar 

  10. 10.

    Kiesel, M., Platt, C., Hanke, W., Abanin, D. A. & Thomale, R. Competing many-body instabilities and unconventional superconductivity in graphene. Phys. Rev. B 86, 020507 (2011).

    Article  Google Scholar 

  11. 11.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    Liu, C. C., Zhang, L. D., Chen, W. Q. & Yang, F. Chiral spin density wave and d + id superconductivity in the magic-angle twisted bilayer-graphene.Phys. Rev. Lett. 121, 217001 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Kennes, D. M., Lischner, J. & Karrasch, C. Strong correlations and d + id superconductivity in twisted bilayer graphene. Phys. Rev. B 98, 241407 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Luke, G. M. et al. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998).

    ADS  Article  Google Scholar 

  16. 16.

    Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    ADS  Article  Google Scholar 

  17. 17.

    Luke, G. M. et al. Muon spin relaxation in UPt3. Phys. Rev. Lett. 71, 1466–1469 (1993).

    ADS  Article  Google Scholar 

  18. 18.

    Joynt, R. & Taillefer, L. The superconducting phases of UPt3. Rev. Mod. Phys. 74, 235–294 (2002).

    ADS  Article  Google Scholar 

  19. 19.

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Sentef, M. A., Tokuno, A., Georges, A. & Kollath, C. Theory of laser-controlled competing superconducting and charge orders. Phys. Rev. Lett. 118, 087002 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991).

    ADS  Article  Google Scholar 

  22. 22.

    Hicks, C. W. et al. Strong increase of T c of Sr2RuO4 under both tensile and compressive strain. Science 344, 283–285 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Sigrist, M. Ehrenfest relations for ultrasound absorption in Sr2RuO4. Prog. Theor. Phys. 107, 917–925 (2002).

    ADS  Article  Google Scholar 

  24. 24.

    Dehghani, H. & Mitra, A. Dynamical generation of superconducting order of different symmetries in hexagonal lattices. Phys. Rev. B 96, 195110 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Agterberg, D. F. Vortex lattice structure of Sr2RuO4. Phys. Rev. Lett. 80, 5184–5187 (1998).

    ADS  Article  Google Scholar 

  26. 26.

    Scaffidi, T., Romers, J. C. & Simon, S. H. Pairing symmetry and dominant band in Sr2RuO4. Phys. Rev. B 89, 220510 (2013).

    Article  Google Scholar 

  27. 27.

    Dunhap, D. H. & Kenkre, V. M. Dynamic localization of a charged particle moving under the influence of an electric field. Phys. Rev. B 34, 3625–3633 (1986).

    ADS  Article  Google Scholar 

  28. 28.

    Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).

    ADS  Article  Google Scholar 

  29. 29.

    Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl Acad. Sci. USA 115, 10938–10942 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Nayak, C. Density wave states of non-zero angular momentum. Phys. Rev. B 62, 4880–4889 (2000).

    ADS  Article  Google Scholar 

  31. 31.

    Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article  Google Scholar 

  32. 32.

    Yuan, N. F. Q. & Fu, L. Model for metal–insulator transition in graphene superlattices and beyond. Phys. Rev. B 98, 045103 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Xu, C. & Balents, L. Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121, 087001 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Dodaro, J. F., Kivelson, S. A., Schattner, Y., Sun, X. Q. & Wang, C. Phases of a phenomenological model of twisted bilayer graphene. Phys. Rev. B 98, 075154 (2018).

    ADS  Article  Google Scholar 

  35. 35.

    Guo, H., Zhu, X., Feng, S. & Scalettar, R. T. Pairing symmetry of interacting fermions on twisted bilayer graphene superlattice. Phys. Rev. B 97, 235453 (2018).

    ADS  Article  Google Scholar 

  36. 36.

    Huang, T., Zhang, L. & Ma, T. Antiferromagnetically ordered Mott insulator and d + id superconductivity in twisted bilayer graphene: a quantum Monte Carlo study. Sci. Bull. 64, 310–314 (2019).

    Article  Google Scholar 

  37. 37.

    Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018).

    Google Scholar 

  38. 38.

    Isobe, H., Yuan, N. F. Q. & Fu, L. Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X 8, 041041 (2018).

    Google Scholar 

  39. 39.

    Padhi, B., Setty, C. & Phillips, P. W. Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization not Mott insulation. Nano Lett. 18, 6175–6180 (2018).

    ADS  Article  Google Scholar 

  40. 40.

    Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon driven superconductor. Preprint at https://arxiv.org/abs/1807.04382 (2018).

  41. 41.

    Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001).

    ADS  Article  Google Scholar 

  42. 42.

    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universitat Wien, 2001).

  43. 43.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Article  Google Scholar 

  44. 44.

    Kuneš, J. et al. Wien2wannier: from linearized augmented plane waves to maximally localized wannier functions. Comput. Phys. Commun. 181, 1888–1895 (2010).

    ADS  Article  Google Scholar 

  45. 45.

    Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    ADS  Article  Google Scholar 

  46. 46.

    Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  47. 47.

    Parcollet, O. et al. Triqs: A toolbox for research on interacting quantum systems. Comput. Phys. Commun. 196, 398–415 (2015).

    ADS  Article  Google Scholar 

  48. 48.

    Seth, P., Krivenko, I., Ferrero, M. & Parcollet, O. Triqs/cthyb: A continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems. Comput. Phys. Commun. 200, 274–284 (2016).

    ADS  Article  Google Scholar 

  49. 49.

    Aichhorn, M. et al. Triqs/dfttools: A triqs application for ab initio calculations of correlated materials. Comp. Phys. Comm. 204, 200–208 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Zhang, G., Gorelov, E., Sarvestani, E. & Pavarini, E. Fermi surface of Sr2RuO4 : spin–orbit and anisotropic Coulomb interaction effects.Phys. Rev. Lett. 116, 106402 (2016).

    ADS  Article  Google Scholar 

  51. 51.

    Kim, M., Mravlje, J., Ferrero, M., Parcollet, O. & Georges, A. Spin–orbit coupling and electronic correlations in S2RuO4. Phys. Rev. Lett. 120, 126401 (2018).

    ADS  Article  Google Scholar 

  52. 52.

    Tamai, A. et al. High-resolution photoemission on Sr2RuO4 reveals correlation-enhanced effective spin–orbit coupling and dominantly local self-energies. Preprint at https://arxiv.org/abs/1812.06531 (2018).

  53. 53.

    Mackenzie, A. P., Scaffidi, T., Hicks, C. W. & Maeno, Y. Even odder after twenty-three years: the superconducting order parameter puzzle of Sr2RuO4. npj Quantum Mater. 2, 40 (2017).

    ADS  Article  Google Scholar 

Download references


We thank A. Georges and A. J. Millis for helpful discussions. M.C. and M.Z. are supported by the Flatiron Institute, a division of the Simons Foundation. D.M.K. and M.A.S. acknowledge support from the DFG through the Emmy Noether programme (KA 3360/2-1 and SE 2558/2-1, respectively). We acknowledge financial support from the European Union Horizon 2020 research and innovation programme under the European Research Council (ERC Advanced Grant Agreement no. 69409).

Author information




M.C. conceived the idea and performed the time-domain calculations. M.C., D.M.K. and M.A.S. analysed the results. M.Z. performed the density functional theory and dynamical mean-field theory simulations. A.R. supervised the project. All authors contributed to discussions and to the writing of the manuscript.

Corresponding author

Correspondence to M. Claassen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Ivar Martin and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, refs. 1–8 and additional mathematical derivations.

Supplementary Video

Switching of the order parameter Bloch vector represented on the Bloch sphere.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Claassen, M., Kennes, D.M., Zingl, M. et al. Universal optical control of chiral superconductors and Majorana modes. Nat. Phys. 15, 766–770 (2019). https://doi.org/10.1038/s41567-019-0532-6

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing