Abstract
Crystals and glasses exhibit fundamentally different heat conduction mechanisms: the periodicity of crystals allows for the excitation of propagating vibrational waves that carry heat, as first discussed by Peierls, while in glasses the lack of periodicity breaks Peierls’s picture and heat is mainly carried by the coupling of vibrational modes, often described by a harmonic theory introduced by Allen and Feldman. Anharmonicity or disorder are thus the limiting factors for thermal conductivity in crystals or glasses. Hitherto, no transport equation has been able to account for both. Here, we derive such an equation, resulting in a thermal conductivity that reduces to the Peierls and Allen–Feldman limits, respectively, in anharmonic crystals or harmonic glasses, while also covering the intermediate regimes where both effects are relevant. This approach also solves the long-standing problem of accurately predicting the thermal properties of crystals with ultralow or glass-like thermal conductivity, as we show with an application to a thermoelectric material representative of this class.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Hydrodynamic finite-size scaling of the thermal conductivity in glasses
npj Computational Materials Open Access 26 August 2023
-
Anharmonic electron-phonon coupling in ultrasoft and locally disordered perovskites
npj Computational Materials Open Access 24 August 2023
-
Unlocking phonon properties of a large and diverse set of cubic crystals by indirect bottom-up machine learning approach
Communications Materials Open Access 15 August 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


Data availability
Raw data were generated using the SCITAS High Performance Computing facility at the École Polytechnique Fédérale de Lausanne. Derived data supporting the findings of this study are available at https://doi.org/10.24435/materialscloud:2019.0001/v2.
Code availability
Quantum ESPRESSO is available at www.quantum-espresso.org; the scripts related to the computation of the third-order force constants using the finite-difference method are available at bitbucket.org/sousaw/thirdorder; the D3Q package for Quantum ESPRESSO is available at sourceforge.net/projects/d3q/. The custom code developed in this work will be made available in a next release of the D3Q package.
References
Peierls, R. Zur Kinetischen Theorie der Wärmeleitung in Kristallen. Ann. Phys. (NY) 395, 1055–1101 (1929).
Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal conductivity of silicon–germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011).
Omini, M. & Sparavigna, A. An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity. Phys. B Condens. Matter 212, 101–112 (1995).
Broido, D., Malorny, M., Birner, G., Mingo, N. & Stewart, D. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007).
Carrete, J. et al. almaBTE: a solver of the space–time dependent Boltzmann transport equation for phonons in structured materials. Comput. Phys. Commun. 220, 351–362 (2017).
Fugallo, G., Lazzeri, M., Paulatto, L. & Mauri, F. Ab initio variational approach for evaluating lattice thermal conductivity. Phys. Rev. B 88, 045430 (2013).
Chaput, L. Direct solution to the linearized phonon Boltzmann equation. Phys. Rev. Lett. 110, 265506 (2013).
Cepellotti, A. & Marzari, N. Thermal transport in crystals as a kinetic theory of relaxons. Phys. Rev. X 6, 041013 (2016).
Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
Paulatto, L., Mauri, F. & Lazzeri, M. Anharmonic properties from a generalized third-order ab initio approach: theory and applications to graphite and graphene. Phys. Rev. B 87, 214303 (2013).
Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011).
Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).
Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).
Hardy, R. J. Energy-flux operator for a lattice. Phys. Rev. 132, 168–177 (1963).
Allen, P. B. & Feldman, J. L. Thermal conductivity of glasses: theory and application to amorphous Si. Phys. Rev. Lett. 62, 645–648 (1989).
Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Philos. Mag. B 79, 1715–1731 (1999).
Lv, W. & Henry, A. Non-negligible contributions to thermal conductivity from localized modes in amorphous silicon dioxide. Sci. Rep. 6, 35720 (2016).
Li, W. & Mingo, N. Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes. Phys. Rev. B 91, 144304 (2015).
Lee, W. et al. Ultralow thermal conductivity in all-inorganic halide perovskites. Proc. Natl Acad. Sci. USA 114, 8693–8697 (2017).
Chen, X. et al. Twisting phonons in complex crystals with quasi-one-dimensional substructures. Nat. Commun. 6, 6723 (2015).
Weathers, A. et al. Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal. Phys. Rev. B 96, 214202 (2017).
Lory, P.-F. et al. Direct measurement of individual phonon lifetimes in the clathrate compound Ba7.81Ge40.67Au5.33. Nat. Commun. 8, 491 (2017).
Mukhopadhyay, S. et al. Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4. Science 360, 1455–1458 (2018).
Shenogin, S., Bodapati, A., Keblinski, P. & McGaughey, A. J. H. Predicting the thermal conductivity of inorganic and polymeric glasses: the role of anharmonicity. J. Appl. Phys. 105, 034906 (2009).
Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, 1960).
Tamura, S.-i Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858–866 (1983).
Gebauer, R. & Car, R. Kinetic theory of quantum transport at the nanoscale. Phys. Rev. B 70, 125324 (2004).
Frensley, W. R. Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745–791 (1990).
Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G. & Thickstun, P. Atom–Photon Interactions: Basic Processes and Applications (Wiley-VCH, 2004).
Kané, G., Lazzeri, M. & Mauri, F. Zener tunneling in the electrical transport of quasimetallic carbon nanotubes. Phys. Rev. B 86, 155433 (2012).
Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015).
Wang, Y. et al. Cation dynamics governed thermal properties of lead halide perovskite nanowires. Nano Lett. 18, 2772–2779 (2018).
Sun, T. & Allen, P. B. Lattice thermal conductivity: computations and theory of the high-temperature breakdown of the phonon-gas model. Phys. Rev. B 82, 224305 (2010).
Voneshen, D. et al. Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate. Nat. Mater. 12, 1028–1032 (2013).
Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).
Iotti, R. C., Ciancio, E. & Rossi, F. Quantum transport theory for semiconductor nanostructures: a density-matrix formulation. Phys. Rev. B 72, 125347 (2005).
Agne, M. T., Hanus, R. & Snyder, G. J. Minimum thermal conductivity in the context of diffuson-mediated thermal transport. Energy Environ. Sci. 11, 609–616 (2018).
Clarke, D. R. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163–164, 67–74 (2003).
Marcolongo, A., Umari, P. & Baroni, S. Microscopic theory and quantum simulation of atomic heat transport. Nat. Phys. 12, 80–84 (2016).
Seyf, H. R. et al. Rethinking phonons: the issue of disorder. npj Comp. Mat. 3, 49 (2017).
Carbogno, C., Ramprasad, R. & Scheffler, M. Ab initio Green–Kubo approach for the thermal conductivity of solids. Phys. Rev. Lett. 118, 175901 (2017).
Puligheddu, M., Gygi, F. & Galli, G. First-principles simulations of heat transport. Phys. Rev. Mater. 1, 060802 (2017).
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).
Hardy, R. J. Phonon Boltzmann equation and second sound in solids. Phys. Rev. B 2, 1193 (1970).
Allen, P. B. & Feldman, J. L. Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48, 12581–12588 (1993).
Auerbach, A. & Allen, P. B. Universal high-temperature saturation in phonon and electron transport. Phys. Rev. B 29, 2884–2890 (1984).
Feldman, J. L., Kluge, M. D., Allen, P. B. & Wooten, F. Thermal conductivity and localization in glasses: numerical study of a model of amorphous silicon. Phys. Rev. B 48, 12589–12602 (1993).
Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).
Gražulis, S. et al. Crystallography open database—an open-access collection of crystal structures. J. Appl. Crystallogr. 42, 726–729 (2009).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).
Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).
Li, W., Carrete, J., Katcho, N. A. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).
Paulatto, L., Errea, I., Calandra, M. & Mauri, F. First-principles calculations of phonon frequencies, lifetimes and spectral functions from weak to strong anharmonicity: the example of palladium hydrides. Phys. Rev. B 91, 054304 (2015).
Togo, A., Chaput, L. & Tanaka, I. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91, 094306 (2015).
Chernatynskiy, A. & Phillpot, S. R. Phonon transport simulator (PhonTS). Comput. Phys. Commun. 192, 196–204 (2015).
Tadano, T., Gohda, Y. & Tsuneyuki, S. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. J. Phys. Condens. Matter 26, 225402 (2014).
Bianco, R., Errea, I., Paulatto, L., Calandra, M. & Mauri, F. Second-order structural phase transitions, free energy curvature and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: theory and stochastic implementation. Phys. Rev. B 96, 014111 (2017).
Tadano, T. & Tsuneyuki, S. Quartic anharmonicity of rattlers and its effect on lattice thermal conductivity of clathrates from first principles. Phys. Rev. Lett. 120, 105901 (2018).
van Roekeghem, A., Carrete, J. & Mingo, N. Anomalous thermal conductivity and suppression of negative thermal expansion in ScF3. Phys. Rev. B 94, 020303 (2016).
Yang, F. C. et al. Temperature dependence of phonons in Pd3Fe through the Curie temperature. Phys. Rev. B 98, 024301 (2018).
Zhang, D.-B., Sun, T. & Wentzcovitch, R. M. Phonon quasiparticles and anharmonic free energy in complex systems. Phys. Rev. Lett. 112, 058501 (2014).
Ravichandran, N. K. & Broido, D. Unified first-principles theory of thermal properties of insulators. Phys. Rev. B 98, 085205 (2018).
Romero, A. H., Gross, E. K. U., Verstraete, M. J. & Hellman, O. Thermal conductivity in PbTe from first principles. Phys. Rev. B 91, 214310 (2015).
Aseginolaza, U. et al. Phonon collapse and second-order phase transition in thermoelectric SnSe. Phys. Rev. Lett. 122, 075901 (2019).
Hellman, O., Abrikosov, I. A. & Simak, S. I. Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B 84, 180301 (2011).
Hellman, O. & Abrikosov, I. A. Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B 88, 144301 (2013).
Hellman, O., Steneteg, P., Abrikosov, I. A. & Simak, S. I. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 87, 104111 (2013).
Souvatzis, P., Eriksson, O., Katsnelson, M. I. & Rudin, S. P. Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100, 095901 (2008).
Acknowledgements
This research was partially supported by the NCCR MARVEL, funded by the Swiss National Science Foundation.
Author information
Authors and Affiliations
Contributions
The project was conceived by all authors. M.S. performed the numerical calculations and prepared the figures with inputs from N.M. and F.M. All authors contributed to the editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Journal peer review information: Nature Physics thanks David Cahill and Marco Buongiorno Nardelli for their contribution to the peer review of this work.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15, 809–813 (2019). https://doi.org/10.1038/s41567-019-0520-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-019-0520-x
This article is cited by
-
Million-scale data integrated deep neural network for phonon properties of heuslers spanning the periodic table
npj Computational Materials (2023)
-
The phonon thermal Hall angle in black phosphorus
Nature Communications (2023)
-
Anharmonic electron-phonon coupling in ultrasoft and locally disordered perovskites
npj Computational Materials (2023)
-
Hydrodynamic finite-size scaling of the thermal conductivity in glasses
npj Computational Materials (2023)
-
Unlocking phonon properties of a large and diverse set of cubic crystals by indirect bottom-up machine learning approach
Communications Materials (2023)