Topological semimetals in crystals with a chiral structure (which possess a handedness due to a lack of mirror and inversion symmetries) are expected to display numerous exotic physical phenomena, including fermionic excitations with large topological charge1, long Fermi arc surface states2,3, unusual magnetotransport4 and lattice dynamics5, as well as a quantized response to circularly polarized light6. So far, all experimentally confirmed topological semimetals exist in crystals that contain mirror operations, meaning that these properties do not appear. Here, we show that AlPt is a structurally chiral topological semimetal that hosts new four-fold and six-fold fermions, which can be viewed as a higher spin generalization of Weyl fermions without equivalence in elementary particle physics. These multifold fermions are located at high symmetry points and have Chern numbers larger than those in Weyl semimetals, thus resulting in multiple Fermi arcs that span the full diagonal of the surface Brillouin zone. By imaging these long Fermi arcs, we experimentally determine the magnitude and sign of their Chern number, allowing us to relate their dispersion to the handedness of their host crystal.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

Additional information

Journal peer review information: Nature Physics thanks David Carpentier and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

  2. 2.

    Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

  3. 3.

    Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

  4. 4.

    Zhong, S., Moore, J. E. & Souza, I. Gyrotropic magnetic effect and the magnetic moment on the Fermi surface. Phys. Rev. Lett. 116, 077201 (2016).

  5. 5.

    Rinkel, P., Lopes, P. L. S. & Garate, I. Signatures of the chiral anomaly in phonon dynamics. Phys. Rev. Lett. 119, 107401 (2017).

  6. 6.

    de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

  7. 7.

    Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).

  8. 8.

    Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

  9. 9.

    Morimoto, T. & Nagaosa, N. Chiral anomaly and giant magnetochiral anisotropy in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 146603 (2016).

  10. 10.

    Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

  11. 11.

    Carnicom, E. M. et al. TaRh2B2 and NbRh2B2: superconductors with a chiral noncentrosymmetric crystal structure. Sci. Adv. 4, eaar7969 (2018).

  12. 12.

    Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

  13. 13.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

  14. 14.

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

  15. 15.

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

  16. 16.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  17. 17.

    Aji, V. Adler–Bell–Jackiw anomaly in Weyl semimetals: application to pyrochlore iridates. Phys. Rev. B 85, 241101 (2012).

  18. 18.

    Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

  19. 19.

    Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

  20. 20.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

  21. 21.

    Yang, K.-Y., Lu, Y.-M. & Ran, Y. Quantum hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

  22. 22.

    Zyuzin, A. A. & Burkov, A. A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012).

  23. 23.

    Grushin, A. G. Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semi-metals. Phys. Rev. D 86, 045001 (2012).

  24. 24.

    Goswami, P. & Tewari, S. Axionic field theory of (3 + 1)-dimensional Weyl semimetals. Phys. Rev. B 88, 245107 (2013).

  25. 25.

    Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

  26. 26.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

  27. 27.

    Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).

  28. 28.

    Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

  29. 29.

    Ma, J.-Z. et al. Three-component fermions with surface Fermi arcs in tungsten carbide. Nat. Phys. 14, 349–354 (2018).

  30. 30.

    Lv, B. Q. et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature 546, 627–631 (2017).

  31. 31.

    Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

  32. 32.

    Fukushima, K., Kharzeev, D. E. & Warringa, H. J. Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008).

  33. 33.

    Flicker, F. et al. Chiral optical response of multifold fermions. Phys. Rev. B 98, 155145 (2018).

  34. 34.

    Zhang, P. et al. A precise method for visualizing dispersive features in image plots. Rev. Sci. Instrum. 82, 43712 (2011).

  35. 35.

    Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

  36. 36.

    Takane, D. et al. Observation of chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi. Phys. Rev. Lett. 122, 076402 (2019).

  37. 37.

    Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

  38. 38.

    Strocov, V. N. et al. Soft‐X‐ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 21, 32–44 (2014).

  39. 39.

    Strocov, V. N. et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 17, 631–643 (2010).

  40. 40.

    Strocov, V. N. Three-dimensional electron realm in VSe2 by soft-X-ray photoelectron spectroscopy: origin of charge-density waves. Phys. Rev. Lett. 109, 086401 (2012).

  41. 41.

    Hoesch, M. et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev. Sci. Instrum. 88, 013106 (2017).

  42. 42.

    Kresse, G. & Furthmueller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

  43. 43.

    Kresse, G. & Furthmueller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

  44. 44.

    Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz Techn. Universität Wien, 2018).

  45. 45.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Ceramic expansion by water layers on magnesium oxide: ab initio study. Phys. Rev. Lett. 77, 3865 (1996).

  46. 46.

    Romero, A. H. & Munoz, F. Pyprocar Code https://github.com/romerogroup/pyprocar (2015).

  47. 47.

    Singh, S., Garcia-Castro, A. C., Valencia-Jaime, I., Muñoz, F. & Romero, A. H. Prediction and control of spin polarization in a Weyl semimetallic phase of BiSb. Phys. Rev. B 94, 161116 (2016).

  48. 48.

    Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graphics Model. 17, 176–179 (1999).

  49. 49.

    Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

Download references


The authors are grateful for excellent technical support from L. Nue and A. Pfister. The authors acknowledge Diamond Light Source for access to beamline I05 (proposal nos. SI19883 and SI21400) and the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beam time at beamline ADRESS of the SLS. N.B.M.S. acknowledges partial financial support from Microsoft. Y.L.C. acknowledges support from the Engineering and Physical Sciences Research Council (grant no. EP/M020517/1). D.P. acknowledges support from the China Scholarship Council. F.J. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under Marie-Sklodowska Curie grant agreement no. 705968. J.A.K. acknowledges the Swiss National Science Foundation (grant no. 200021_165910). Part of the work of B.B. and M.G.V. was carried out at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611. M.G.V. was supported by the IS2016-75862-P national project of the Spanish MINECO. K.M. and C.F. acknowledge financial support from the ERC through grant no. 742068 ‘TOP-MAT’.

Author information


  1. Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland

    • Niels B. M. Schröter
    • , Jonas. A. Krieger
    • , Thorsten Schmitt
    •  & Vladimir N. Strocov
  2. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK

    • Ding Pei
    •  & Yulin Chen
  3. Donostia International Physics Center, Donostia-San Sebastian, Spain

    • Maia G. Vergniory
    •  & Fernando de Juan
  4. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

    • Maia G. Vergniory
    •  & Fernando de Juan
  5. Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

    • Yan Sun
    • , Kaustuv Manna
    • , Vicky Süss
    • , Marcus Schmidt
    •  & Claudia Felser
  6. Rudolph Peierls Centre for Theoretical Physics, University of Oxford, Department of Physics, Clarendon Laboratory, Oxford, UK

    • Fernando de Juan
  7. Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Villigen, Switzerland

    • Jonas. A. Krieger
  8. Laboratorium für Festkörperphysik, ETH Zurich, Zurich, Switzerland

    • Jonas. A. Krieger
  9. Diamond Light Source, Didcot, UK

    • Pavel Dudin
    • , Timur K. Kim
    •  & Cephise Cacho
  10. Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, USA

    • Barry Bradlyn


  1. Search for Niels B. M. Schröter in:

  2. Search for Ding Pei in:

  3. Search for Maia G. Vergniory in:

  4. Search for Yan Sun in:

  5. Search for Kaustuv Manna in:

  6. Search for Fernando de Juan in:

  7. Search for Jonas. A. Krieger in:

  8. Search for Vicky Süss in:

  9. Search for Marcus Schmidt in:

  10. Search for Pavel Dudin in:

  11. Search for Barry Bradlyn in:

  12. Search for Timur K. Kim in:

  13. Search for Thorsten Schmitt in:

  14. Search for Cephise Cacho in:

  15. Search for Claudia Felser in:

  16. Search for Vladimir N. Strocov in:

  17. Search for Yulin Chen in:


N.B.M.S. conducted the SX-ARPES experiments with the support of J.A.K. and V.N.S. and the VUV-ARPES experiments with the support of D.P. and P.D. The experimental data were analysed by N.B.M.S. and D.P. M.G.V. and Y.S. performed the VASP slab and bulk ab initio calculations, and N.B.M.S. performed the Wien2k bulk calculations with the support of D.P. F.J. and B.B. provided further theoretical support. K.M., V.S. and M.S. grew the samples and K.M. performed the powder X-ray diffraction refinement. P.D., T.K.K., T.S., C.C. and V.N.S. maintained the ARPES end stations. N.B.M.S. and F.J. wrote the manuscript with input and discussion from co-authors. V.N.S., C.F. and Y.C. supervised the research.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Niels B. M. Schröter or Yulin Chen.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–6.

About this article

Publication history