Chiral topological semimetal with multifold band crossings and long Fermi arcs


Topological semimetals in crystals with a chiral structure (which possess a handedness due to a lack of mirror and inversion symmetries) are expected to display numerous exotic physical phenomena, including fermionic excitations with large topological charge1, long Fermi arc surface states2,3, unusual magnetotransport4 and lattice dynamics5, as well as a quantized response to circularly polarized light6. So far, all experimentally confirmed topological semimetals exist in crystals that contain mirror operations, meaning that these properties do not appear. Here, we show that AlPt is a structurally chiral topological semimetal that hosts new four-fold and six-fold fermions, which can be viewed as a higher spin generalization of Weyl fermions without equivalence in elementary particle physics. These multifold fermions are located at high symmetry points and have Chern numbers larger than those in Weyl semimetals, thus resulting in multiple Fermi arcs that span the full diagonal of the surface Brillouin zone. By imaging these long Fermi arcs, we experimentally determine the magnitude and sign of their Chern number, allowing us to relate their dispersion to the handedness of their host crystal.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Basic characteristics of chiral topological semimetals and AlPt.
Fig. 2: Bulk electronic structure of AlPt.
Fig. 3: Bulk electronic structure and surface Fermi arcs on the (001) cleavage plane.
Fig. 4: Connection between the directionality of the surface Fermi arcs and the handedness of the bulk crystal.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.


  1. 1.

    Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    MathSciNet  Article  Google Scholar 

  2. 2.

    Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Zhong, S., Moore, J. E. & Souza, I. Gyrotropic magnetic effect and the magnetic moment on the Fermi surface. Phys. Rev. Lett. 116, 077201 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Rinkel, P., Lopes, P. L. S. & Garate, I. Signatures of the chiral anomaly in phonon dynamics. Phys. Rev. Lett. 119, 107401 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).

    ADS  Article  Google Scholar 

  8. 8.

    Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    ADS  Article  Google Scholar 

  9. 9.

    Morimoto, T. & Nagaosa, N. Chiral anomaly and giant magnetochiral anisotropy in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 146603 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Carnicom, E. M. et al. TaRh2B2 and NbRh2B2: superconductors with a chiral noncentrosymmetric crystal structure. Sci. Adv. 4, eaar7969 (2018).

    Article  Google Scholar 

  12. 12.

    Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  15. 15.

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  Google Scholar 

  16. 16.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    Aji, V. Adler–Bell–Jackiw anomaly in Weyl semimetals: application to pyrochlore iridates. Phys. Rev. B 85, 241101 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

    Google Scholar 

  20. 20.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Yang, K.-Y., Lu, Y.-M. & Ran, Y. Quantum hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    ADS  Article  Google Scholar 

  22. 22.

    Zyuzin, A. A. & Burkov, A. A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    Grushin, A. G. Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semi-metals. Phys. Rev. D 86, 045001 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    Goswami, P. & Tewari, S. Axionic field theory of (3 + 1)-dimensional Weyl semimetals. Phys. Rev. B 88, 245107 (2013).

    ADS  Article  Google Scholar 

  25. 25.

    Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Ma, J.-Z. et al. Three-component fermions with surface Fermi arcs in tungsten carbide. Nat. Phys. 14, 349–354 (2018).

    Article  Google Scholar 

  30. 30.

    Lv, B. Q. et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature 546, 627–631 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Fukushima, K., Kharzeev, D. E. & Warringa, H. J. Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008).

    ADS  Article  Google Scholar 

  33. 33.

    Flicker, F. et al. Chiral optical response of multifold fermions. Phys. Rev. B 98, 155145 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Zhang, P. et al. A precise method for visualizing dispersive features in image plots. Rev. Sci. Instrum. 82, 43712 (2011).

    Article  Google Scholar 

  35. 35.

    Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    ADS  Article  Google Scholar 

  36. 36.

    Takane, D. et al. Observation of chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi. Phys. Rev. Lett. 122, 076402 (2019).

    ADS  Article  Google Scholar 

  37. 37.

    Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    ADS  Article  Google Scholar 

  38. 38.

    Strocov, V. N. et al. Soft‐X‐ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 21, 32–44 (2014).

    Article  Google Scholar 

  39. 39.

    Strocov, V. N. et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 17, 631–643 (2010).

    Article  Google Scholar 

  40. 40.

    Strocov, V. N. Three-dimensional electron realm in VSe2 by soft-X-ray photoelectron spectroscopy: origin of charge-density waves. Phys. Rev. Lett. 109, 086401 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Hoesch, M. et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev. Sci. Instrum. 88, 013106 (2017).

    ADS  Article  Google Scholar 

  42. 42.

    Kresse, G. & Furthmueller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  43. 43.

    Kresse, G. & Furthmueller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS  Article  Google Scholar 

  44. 44.

    Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz Techn. Universität Wien, 2018).

  45. 45.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Ceramic expansion by water layers on magnesium oxide: ab initio study. Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Article  Google Scholar 

  46. 46.

    Romero, A. H. & Munoz, F. Pyprocar Code (2015).

  47. 47.

    Singh, S., Garcia-Castro, A. C., Valencia-Jaime, I., Muñoz, F. & Romero, A. H. Prediction and control of spin polarization in a Weyl semimetallic phase of BiSb. Phys. Rev. B 94, 161116 (2016).

    ADS  Article  Google Scholar 

  48. 48.

    Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graphics Model. 17, 176–179 (1999).

    Article  Google Scholar 

  49. 49.

    Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

Download references


The authors are grateful for excellent technical support from L. Nue and A. Pfister. The authors acknowledge Diamond Light Source for access to beamline I05 (proposal nos. SI19883 and SI21400) and the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beam time at beamline ADRESS of the SLS. N.B.M.S. acknowledges partial financial support from Microsoft. Y.L.C. acknowledges support from the Engineering and Physical Sciences Research Council (grant no. EP/M020517/1). D.P. acknowledges support from the China Scholarship Council. F.J. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under Marie-Sklodowska Curie grant agreement no. 705968. J.A.K. acknowledges the Swiss National Science Foundation (grant no. 200021_165910). Part of the work of B.B. and M.G.V. was carried out at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611. M.G.V. was supported by the IS2016-75862-P national project of the Spanish MINECO. K.M. and C.F. acknowledge financial support from the ERC through grant no. 742068 ‘TOP-MAT’.

Author information




N.B.M.S. conducted the SX-ARPES experiments with the support of J.A.K. and V.N.S. and the VUV-ARPES experiments with the support of D.P. and P.D. The experimental data were analysed by N.B.M.S. and D.P. M.G.V. and Y.S. performed the VASP slab and bulk ab initio calculations, and N.B.M.S. performed the Wien2k bulk calculations with the support of D.P. F.J. and B.B. provided further theoretical support. K.M., V.S. and M.S. grew the samples and K.M. performed the powder X-ray diffraction refinement. P.D., T.K.K., T.S., C.C. and V.N.S. maintained the ARPES end stations. N.B.M.S. and F.J. wrote the manuscript with input and discussion from co-authors. V.N.S., C.F. and Y.C. supervised the research.

Corresponding authors

Correspondence to Niels B. M. Schröter or Yulin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks David Carpentier and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schröter, N.B.M., Pei, D., Vergniory, M.G. et al. Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15, 759–765 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing