Experimental characterization of two-particle entanglement through position and momentum correlations

Abstract

Quantum simulation is a rapidly advancing tool for gaining insight into complex quantum states and their dynamics. Trapped-ion systems have pioneered deterministic state preparation and comprehensive state characterization, operating on localized and thus distinguishable particles1. With ultracold atom experiments, one can prepare large samples of delocalized particles, but the same level of characterization has not yet been achieved2. Here, we present a method to measure the positions and momenta of individual particles to obtain correlations and coherences. We demonstrate this with deterministically prepared samples of two interacting ultracold fermions in a coupled double well3. As a first application, we use our technique to certify and quantify different types of entanglement4,5,6.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Detection of many-body systems in conjugate bases.
Fig. 2: Correlations in the Hubbard dimer.
Fig. 3: Evaluation of the concurrence from the measured correlation functions.
Fig. 4: Entanglement entropy of the Hubbard dimer.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  Google Scholar 

  2. 2.

    Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Murmann, S. et al. Two fermions in a double well: exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Ghirardi, G., Marinatto, L. & Weber, T. Entanglement and properties of composite quantum systems: a conceptual and mathematical analysis. J. Stat. Phys. 108, 49–122 (2002).

    MathSciNet  Article  Google Scholar 

  5. 5.

    Dowling, M. R., Doherty, A. C. & Wiseman, H. M. Entanglement of indistinguishable particles in condensed-matter physics. Phys. Rev. A 73, 052323 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    Bonneau, M., Munro, W. J., Nemoto, K. & Schmiedmayer, J. Characterizing twin-particle entanglement in double-well potentials. Phys. Rev. A 98, 033608 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Ott, H. Single atom detection in ultracold quantum gases: a review of current progress. Rep. Prog. Phys. 79, 054401 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    ADS  Article  Google Scholar 

  9. 9.

    Yannouleas, C., Brandt, B. B. & Landman, U. Interference, spectral momentum correlations, entanglement and Bell inequality for a trapped interacting ultracold atomic dimer: analogies with biphoton interferometry. Phys. Rev. A 99, 013616 (2019).

    ADS  Article  Google Scholar 

  10. 10.

    Desbuquois, R. et al. Controlling the Floquet state population and observing micromotion in a periodically driven two-body quantum system. Phys. Rev. A 96, 053602 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Tichy, M. C., Mintert, F. & Buchleitner, A. Essential entanglement for atomic and molecular physics. J. Phys. B 44, 192001 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Amico, L., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Dai, H.-N. et al. Generation and detection of atomic spin entanglement in optical lattices. Nat. Phys. 12, 783–787 (2016).

    Article  Google Scholar 

  16. 16.

    Kaufman, A. M. et al. Entangling two transportable neutral atoms via local spin exchange. Nature 527, 208–211 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Lester, B. J. et al. Measurement-based entanglement of noninteracting bosonic atoms. Phys. Rev. Lett. 120, 193602 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Cramer, M. et al. Spatial entanglement of bosons in optical lattices. Nat. Commun. 4, 2161 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Zanardi, P. Quantum entanglement in fermionic lattices. Phys. Rev. A 65, 042101 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Wiseman, H. M. & Vaccaro, J. A. Entanglement of indistinguishable particles shared between two parties. Phys. Rev. Lett. 91, 097902 (2003).

    ADS  Article  Google Scholar 

  22. 22.

    Fukuhara, T. et al. Spatially resolved detection of a spin-entanglement wave in a Bose–Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Mazza, L., Rossini, D., Fazio, R. & Endres, M. Detecting two-site spin-entanglement in many-body systems with local particle-number fluctuations. New J. Phys. 17, 013015 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Taguchi, G. et al. Measurement and control of spatial qubits generated by passing photons through double slits. Phys. Rev. A 78, 012307 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    Bergschneider, A. et al. Spin-resolved single-atom imaging of 6Li in free space. Phys. Rev. A 97, 063613 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    ADS  Article  Google Scholar 

  27. 27.

    Jafarpour, M. & Sabour, A. A useful strong lower bound on two-qubit concurrence. Quantum Inf. Process. 11, 1389–1402 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Mintert, F. & Buchleitner, A. Observable entanglement measure for mixed quantum states. Phys. Rev. Lett. 98, 140505 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Blume-Kohout, R. Optimal, reliable estimation of quantum states. New J. Phys. 12, 043034 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    Kitagawa, T., Aspect, A., Greiner, M. & Demler, E. Phase-sensitive measurements of order parameters for ultracold atoms through two-particle interferometry. Phys. Rev. Lett. 106, 115302 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge insightful discussions with A. Daley, N. Defenu, A. Elben, M. Gärttner, P. Hauke and M. Piani. This work has been supported by ERC consolidator grant 725636, DFG grant JO970/1-1, the Heidelberg Center for Quantum Dynamics and is part of the DFG Collaborative Research Centre SFB 1225 (ISOQUANT). A.B. acknowledges funding from the International Max-Planck Research School (IMPRS-QD). P.M.P. acknowledges funding from the European Union’s Horizon 2020 programme under Marie Sklodowska-Curie grant agreement no. 706487 and from the Daimler and Benz Foundation.

Author information

Affiliations

Authors

Contributions

A.B., V.M.K., G.Z., S.J. and P.M.P. conceived the experiment. A.B., V.M.K., J.H.B., R.K. and P.M.P. performed the experiment and, together with L.P., performed data analysis, developed theory and wrote the manuscript. All authors contributed to discussions about the experiment and manuscript. S.J. and P.M.P. supervised the project.

Corresponding author

Correspondence to Philipp M. Preiss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Luca Pezzè and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary text, Supplementary Figures 1–5 and Supplementary references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergschneider, A., Klinkhamer, V.M., Becher, J.H. et al. Experimental characterization of two-particle entanglement through position and momentum correlations. Nat. Phys. 15, 640–644 (2019). https://doi.org/10.1038/s41567-019-0508-6

Download citation

Further reading