News & Views | Published:

APPLIED MATHEMATICS

Geometry for mechanics

The mechanics of many materials can be modelled by a network of balls connected by springs. A bottom-up approach based on differential geometry now captures changes in mechanics upon network growth or merger, going beyond the linear deformation regime.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Kim, J. Z., Lu, Z., Strogatz, S. H. & Bassett, D. S. Nat. Phys. https://doi.org/10.1038/s41567-019-0475-y (2019).

  2. 2.

    Maxwell, J. C. Philos. Mag. 27, 294–299 (1865).

  3. 3.

    Calladine, C. R. Int. J. Solids Struct. 14, 161–172 (1978).

  4. 4.

    Chen, B. G. et al. Proc. Natl Acad. Sci. USA 111, 13004–13009 (2014).

  5. 5.

    Bertoldi, K. et al. Nat. Rev. Mater. 2, 17066 (2017).

  6. 6.

    Kane, C. L. & Lubensky, T. C. Nat. Phys. 10, 39–45 (2014).

  7. 7.

    Paulose, J., Chen, B. G.-G. & Vitelli, V. Nat. Phys. 11, 153–156 (2015).

  8. 8.

    Bilal, O. R. et al. Adv. Mater. 29, 1700540 (2017).

  9. 9.

    Baardink, G. et al. Proc. Natl Acad. Sci. USA 115, 489–494 (2018).

  10. 10.

    Rocklin, D. Z., Vitelli, V. & Mao, X. Preprint at https://arxiv.org/abs/1802.02704 (2018).

  11. 11.

    Rocks, J. W. et al. Proc. Natl Acad. Sci. USA 114, 2520–2525 (2017).

  12. 12.

    Yan, L. et al. Proc. Natl Acad. Sci. USA 114, 2526–2531 (2017).

Download references

Author information

Correspondence to V. Vitelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Designing exotic mechanics in networks.