Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet

Abstract

In a quantum phase transition, the ground state and low-temperature properties of a system change drastically as some parameter controlling zero-point quantum fluctuations is tuned to a critical value. Like classical phase transitions driven by thermal fluctuations, a ground-state transition can be discontinuous (first order) or continuous. Theoretical studies have suggested exotic continuous transitions where a system develops higher symmetries than those of the underlying Hamiltonian. Here, we demonstrate an unconventional discontinuous transition between two ordered ground states of a quantum magnet, with an emergent symmetry of its coexistence state. We present a Monte Carlo study of a two-dimensional Sā€‰=ā€‰1/2 spin system hosting an antiferromagnetic state and a plaquette-singlet solid state of the kind recently detected in SrCu2(BO3)2. We show that the O(3) symmetric antiferromagnetic order and the scalar plaquette-singlet solid order form an O(4) vector at the transition. Unlike conventional first-order transitions, there are no energy barriers between the two coexisting phases, as the O(4) order parameter can be rotated at constant energy. Away from the transition, the O(4) surface is uniaxially deformed by the control parameter (a coupling ratio). This phenomenon may be observable in SrCu2(BO3)2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum spin models discussed in this work.
Fig. 2: Demonstration of a two-fold degenerate PSS state.
Fig. 3: CBJQ results from SSE simulations.
Fig. 4: Direct evidence for emergent O(4) symmetry.
Fig. 5: Inverse PSS critical temperature versus the shifted coupling Ī“ā€‰=ā€‰gcā€‰āˆ’ā€‰g.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sachdev, S. Quantum magnetism and criticality. Nat. Phys. 4, 173ā€“185 (2008).

    ArticleĀ  Google ScholarĀ 

  2. Kaul, R. K., Melko, R. G. & Sandvik, A. W. Bridging lattice-scale physics and continuum field theory with quantum Monte Carlo simulations. Annu. Rev. Condens. Matter Phys. 4, 179ā€“215 (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  3. Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490ā€“1494 (2004).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  4. Senthil, T., Balents, L., Sachdev, S., Vishwanath, A. & Fisher, M. P. A. Quantum criticality beyond the Landauā€“Ginzburgā€“Wilson paradigm. Phys. Rev. B 70, 144407 (2004).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  5. Sandvik, A. W. Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. Phys. Rev. Lett. 98, 227202 (2007).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  6. Melko, R. G. & Kaul, R. K. Scaling in the fan of an unconventional quantum critical point. Phys. Rev. Lett. 100, 017203 (2008).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. Jiang, F.-J., Nyfeler, M., Chandrasekharan, S. & Wiese, U.-J. From an antiferromagnet to a valence bond solid: evidence for a first-order phase transition. J. Stat. Mech. 2008, P02009 (2008).

    Google ScholarĀ 

  8. Kuklov, A. B., Matsumoto, M., Prokofā€™ev, N. V., Svistunov, B. V. & Troyer, M. Deconfined criticality: generic first-order transition in the SU(2) symmetry case. Phys. Rev. Lett. 101, 050405 (2008).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  9. Lou, J., Sandvik, A. W. & Kawashima, N. Antiferromagnetic to valence-bond-solid transitions in two-dimensional SU(N) Heisenberg models with multispin interactions. Phys. Rev. B 80, 180414(R) (2009).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  10. Sandvik, A. W. Continuous quantum phase transition between an antiferromagnet and a valence-bond solid in two dimensions: evidence for logarithmic corrections to scaling. Phys. Rev. Lett. 104, 177201 (2010).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  11. Chen, K. et al. Deconfined criticality flow in the Heisenberg model with ring-exchange interactions. Phys. Rev. Lett. 110, 185701 (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  12. Harada, K. et al. Possibility of deconfined criticality in SU(N) Heisenberg models at small N. Phys. Rev. B 88, 220408(R) (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  13. Block, M. S., Melko, R. G. & Kaul, R. K. Fate of CPNāˆ’1 fixed points with q monopoles. Phys. Rev. Lett. 111, 137202 (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. Pujari, S., Damle, K. & Alet, F. NĆ©el-state to valence-bond-solid transition on the honeycomb lattice: evidence for deconfined criticality. Phys. Rev. Lett. 111, 087203 (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  15. Nahum, A., Chalker, J. T., Serna, P., OrtuƱo, M. & Somoza, A. M. Deconfined quantum criticality, scaling violations, and classical loop models. Phys. Rev. X 5, 041048 (2015).

    Google ScholarĀ 

  16. Shao, H., Guo, W. & Sandvik, A. W. Quantum criticality with two length scales. Science 352, 213ā€“216 (2016).

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  17. Zayed, M. et al. 4-Spin plaquette singlet state in the Shastryā€“Sutherland compound SrCu2(BO3)2. Nat. Phys. 13, 962ā€“966 (2017).

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  18. Shastry, B. S. & Sutherland, B. Exact ground state of a quantum mechanical antiferromagnet. Physica Bā€‰+ā€‰C 108, 1069ā€“1070 (1981).

    ADSĀ  Google ScholarĀ 

  19. Corboz, P. & Mila, F. Tensor network study of the Shastryā€“Sutherland model in zero magnetic field. Phys. Rev. B 87, 115144 (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  20. Nahum, A., Serna, P., Chalker, J. T., OrtuƱo, M. & Somoza, A. M. Emergent SO(5) symmetry at the NƩel to valence-bond-solid transition. Phys. Rev. Lett. 115, 267203 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. Karch, A. & Tong, D. Particle-vortex duality from 3D bosonization. Phys. Rev. X 6, 031043 (2016).

    Google ScholarĀ 

  22. Metlitski, M. A. & Vishwanath, A. Particle-vortex duality of two-dimensional Dirac fermion from electric-magnetic duality of three-dimensional topological insulators. Phys. Rev. B 93, 245151 (2016).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  23. Mross, D. F., Alicea, J. & Motrunich, O. I. Explicit derivation of duality between a free Dirac cone and quantum electrodynamics in (2ā€‰+ā€‰1) dimensions. Phys. Rev. Lett. 117, 016802 (2016).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. Kachru, S., Mulligan, M., Torroba, G. & Wang, H. Non-supersymmetric dualities from mirror symmetry. Phys. Rev. Lett. 118, 011602 (2017).

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  25. Wang, C., Nahum, A., Metlitski, M. A., Xu, C. & Senthil, T. Deconfined quantum critical points: symmetries and dualities. Phys. Rev. X 7, 031051 (2017).

    Google ScholarĀ 

  26. Qin, Y. Q. et al. Duality between the deconfined quantum-critical point and the bosonic topological transition. Phys. Rev. X 7, 031052 (2017).

    Google ScholarĀ 

  27. Sato, T., Hohenadler, M. & Assaad, F. F. Dirac fermions with competing orders: non-Landau transition with emergent symmetry. Phys. Rev. Lett. 119, 197203 (2017).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  28. Metlitski, M. A. & Thorngren, R. Intrinsic and emergent anomalies at deconfined critical points. Phys. Rev. B 98, 085140 (2018).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  29. Gazit, S., Assaad, F. F., Sachdev, S., Vishwanath, A. & Wang, C. Confinement transition of Z2 gauge theories coupled to massless fermions: emergent QCD3 and SO(5) symmetry. Proc. Natl Acad. Sci. USA 115, E6987 (2018).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  30. Sreejith, G. J., Powell, S. & Nahum, A. Emergent SO(5) symmetry at the columnar ordering transition in the classical cubic dimer model. Phys. Rev. Lett. 122, 080601 (2019).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  31. Irkhin, V. Yu & Katanin, A. A. Thermodynamics of isotropic and anisotropic layered magnets: renormalization-group approach and 1/N expansion. Phys. Rev. B 57, 379ā€“391 (1998).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  32. Cuccoli, A., Roscilde, T., Tognetti, V., Vaia, R. & Verrucchi, P. Quantum Monte Carlo study of Sā€‰=ā€‰Ā½ weakly anisotropic antiferromagnets on the square lattice. Phys. Rev. B 67, 104414 (2003).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  33. Sandvik, A. W. & Evertz, H. G. Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis. Phys. Rev. B 82, 024407 (2010).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  34. Sandvik, A. W. Computational studies of quantum spin systems. AIP Conf. Proc. 1297, 135ā€“338 (2010).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  35. Sandvik, A. W. Finite-size scaling and boundary effects in two-dimensional valence-bond solids. Phys. Rev. B 85, 134407 (2012).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  36. Senthil, T. & Fisher, M. P. A. Competing orders, nonlinear sigma models, and topological terms in quantum magnets. Phys. Rev. B 74, 064405 (2006).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  37. Luck, J. M. Corrections to finite-size-scaling laws and convergence of transfer-matrix methods. Phys. Rev. B 31, 3069ā€“3083 (1985).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  38. Vollmayr, K., Reger, J. D., Scheucher, M. & Binder, K. Finite size effects at thermally-driven first order phase transitions: a phenomenological theory of the order parameter distribution. Z. Phys. B 91, 113ā€“125 (1993).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  39. Iino, S., Morita, S., Sandvik, A. W. & Kawashima, N. Detecting signals of weakly first-order phase transitions in two-dimensional Potts models. J. Phys. Soc. Jpn 88, 034006 (2019).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  40. Sen, A. & Sandvik, A. W. Example of a first-order NĆ©el to valence-bond-solid transition in two dimensions. Phys. Rev. B 82, 174428 (2010).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  41. Kuklov, A., Prokofā€™ev, N. & Svistunov, B. Weak first-order superfluidā€“solid quantum phase transitions. Phys. Rev. Lett. 93, 230402 (2004).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  42. Pelissettp, A. & Vicari, E. Multicritical behavior of two-dimensional anisotropic antiferromagnets in a magnetic field. Phys. Rev. B 76, 024436 (2007).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  43. Hasenbusch, M. & Vicari, E. Anisotropic perturbations in three-dimensional O(N)-symmetric vector models. Phys. Rev. B 84, 125136 (2011).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  44. Eichorn, A., MesterhƔzy, D. & Scherer, M. M. Multicritical behavior in models with two competing order parameters. Phys. Rev. E 88, 042141 (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  45. HĆ©bert, F. et al. Quantum phase transitions in the two-dimensional hardcore boson model. Phys. Rev. B 65, 014513 (2001).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  46. Demler, E., Hanke, W. & Zhang, S.-C. SO(5) theory of antiferromagnetism and superconductivity. Rev. Mod. Phys. 76, 909ā€“974 (2004).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  47. Wildeboer, J., Dā€™Emidio, J. & Kaul, R. K. Emergent symmetry at a transition between intertwined orders in a Sā€‰=ā€‰1 magnet. Preprint at https://arxiv.org/abs/1808.04731 (2018).

  48. Serna, P. & Nahum, A. Emergence and spontaneous breaking of approximate O(4) symmetry at a weakly first-order deconfined phase transition. Preprint at https://arxiv.org/abs/1805.03759 (2018).

  49. Muller, M. E. A note on a method for generating points uniformly on n-dimensional spheres. Commun. ACM 2, 19ā€“20 (1959).

    ArticleĀ  Google ScholarĀ 

  50. Beach, K. S. D. & Sandvik, A. W. Some formal results for the valence bond basis. Nucl. Phys. B 750, 142ā€“178 (2006).

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  51. Liang, S., Doucot, B. & Anderson, P. W. Some new variational resonating-valence-bond-type wave functions for the spin-Ā½ antiferromagnetic Heisenberg model on a square lattice. Phys. Rev. Lett. 61, 365ā€“368 (1988).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  52. Wolff, U. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361ā€“364 (1989).

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors thank F. Assaad, R. Kaul, N. Kawashima, S. Li, Z.Y. Meng, A. Nahum, Y. Ran, S. Sachdev, H. Shao, L. Sun, J. Takahashi and Z.-C. Yang for stimulating discussions. This work was supported by the NSF under grant no. DMR-1710170 and by a Simons Investigator Award. The calculations were carried out on Boston Universityā€™s Shared Computing Cluster.

Author information

Authors and Affiliations

Authors

Contributions

A.W.S. conceived the CBJQ model and planned the study. The numerical simulations of the CBJQ model were implemented and carried out by B.Z. P.W. simulated the classical Heisenberg model. B.Z. analysed all data under the supervision of A.W.S. and with input from P.W. B.Z. wrote the initial draft of the manuscript, which was finalized by A.W.S. with input from B.Z. and P.W.

Corresponding author

Correspondence to Anders W. Sandvik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherā€™s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Supplementary Figures 1ā€“8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Weinberg, P. & Sandvik, A.W. Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet. Nat. Phys. 15, 678ā€“682 (2019). https://doi.org/10.1038/s41567-019-0484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0484-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing