Stern–Gerlach detection of neutral-atom qubits in a state-dependent optical lattice

Abstract

Qubit state measurements are an essential part of any quantum computer, constituting the readout. Accurate measurements are also an integral component of one-way quantum computation and of error correction, which is needed for fault-tolerant quantum computation1. Here, we present a state measurement for neutral-atom qubits based on coherent spatial splitting of the atoms’ wavefunctions. It is reminiscent of the Stern–Gerlach experiment2, but carried out in light traps. For around 160 qubits in a three-dimensional array, we achieve a measurement fidelity of 0.9994, which is roughly 20 times lower error than in previous measurements of neutral-atom arrays3,4. It also greatly exceeds the measurement fidelity of other arrays with more than four qubits, including those with ion and superconducting qubits5,6. Our measurement fidelity is essentially independent of the number of qubits measured, and since the measurement causes no loss, we can reuse the atoms. We also demonstrate that we can replace atoms lost to background gas collisions during the experiment7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of lossless state detection.
Fig. 2: Displacement distributions and state assignment.
Fig. 3: Demonstration of re-initialization of a 3D qubit array.
Fig. 4: State-selective detection from the clock states.

Data availability

The data that support the plots in this paper are available from the corresponding author upon reasonable request.

References

  1. 1.

    Bruss, D. & Leuchs, G. Lectures on Quantum Information (Wiley, 2007).

  2. 2.

    Gerlach, W. & Stern, O. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z. Phys. 9, 349–352 (1922).

    ADS  Article  Google Scholar 

  3. 3.

    Kwon, M., Ebert, M. F., Walker, T. G. & Saffman, M. Parallel low-loss measurement of multiple atomic qubits. Phys. Rev. Lett. 119, 180504 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Martinez-Dorantes, M. et al. Fast nondestructive parallel readout of neutral atom registers in optical potentials. Phys. Rev. Lett. 119, 180503 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Jeffrey, E. et al. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112, 190504 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Kumar, A., Wu, T.-Y., Giraldo Mejia, F. & Weiss, D. S. Sorting ultracold atoms in a 3D optical lattice in a realization of Maxwell’s demon. Nature 561, 83–87 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Weiss, D. & Saffman, M. Quantum computing with neutral atoms. Phys. Today 70, 45–50 (2017).

    Article  Google Scholar 

  9. 9.

    Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nat. Phys. 3, 556–560 (2007).

    Article  Google Scholar 

  10. 10.

    Gibbons, M. J., Hamley, C. D., Shih, C. Y. & Chapman, M. S. Nondestructive fluorescent state detection of single neutral atom qubits. Phys. Rev. Lett. 106, 133002 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Fuhrmanek, A., Bourgain, R., Sortais, Y. R. P. & Browaeys, A. Free-space lossless state detection of a single trapped atom. Phys. Rev. Lett. 106, 133003 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Covey, J. P., Madjarov, I. S., Cooper, A. & Endres, M. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Preprint at https://arxiv.org/abs/1811.06014 (2018).

  13. 13.

    Bochmann, J. et al. Lossless state detection of single neutral atoms. Phys. Rev. Lett. 104, 203601 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Gehr, R. et al. Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104, 203602 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Boll, M. et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains. Science 353, 1257–1260 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Deutsch, I. H. & Jessen, P. S. Quantum-state control in optical lattices. Phys. Rev. A 57, 1972–1986 (1998).

    ADS  Article  Google Scholar 

  17. 17.

    Robens, C. et al. Low-entropy states of neutral atoms in polarization-synthesized optical lattices. Phys. Rev. Lett. 118, 065302 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Li, X., Corcovilos, T. A., Wang, Y. & Weiss, D. S. 3D projection sideband cooling. Phys. Rev. Lett. 108, 103001 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Wang, Y., Zhang, X. L., Corcovilos, T. A., Kumar, A. & Weiss, D. S. Coherent addressing of individual neutral atoms in a 3D optical lattice. Phys. Rev. Lett. 115, 043003 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Wang, Y., Kumar, A., Wu, T. Y. & Weiss, D. S. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science 352, 1562–1565 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Barredo, D., Lienhard, V., De Leseleuc, S., Lahaye, T. & Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Lester, B. J., Luick, N., Kaufman, A. M., Reynolds, C. M. & Regal, C. A. Rapid production of uniformly filled arrays of neutral atoms. Phys. Rev. Lett. 115, 073003 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    Linke, N. M. et al. Fault-tolerant quantum error detection. Sci. Adv. 3, e1701074 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Yamamoto, R. et al. Site-resolved imaging of single atoms with a Faraday quantum gas microscope. Phys. Rev. A 96, 033610 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B 49, 202001 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Science Foundation grant numbers PHY-1520976 and PHY-1820849.

Author information

Affiliations

Authors

Contributions

All authors contributed to the design, execution and analysis of the experiment and the writing of the manuscript. A.K., T.-Y.W. and F.G. collected all the data.

Corresponding author

Correspondence to David S. Weiss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text and Supplementary Figures 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Kumar, A., Giraldo, F. et al. Stern–Gerlach detection of neutral-atom qubits in a state-dependent optical lattice. Nat. Phys. 15, 538–542 (2019). https://doi.org/10.1038/s41567-019-0478-8

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing