Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-dimensional skyrmion bags in liquid crystals and ferromagnets

Abstract

Reconfigurable, ordered matter offers great potential for future low-power computer memory by storing information in energetically stable configurations. Among these, skyrmions—which are topologically protected, robust excitations that have been demonstrated in chiral magnets1,2,3,4 and in liquid crystals5,6,7—are driving much excitement about potential spintronic applications8. These information-encoding structures topologically resemble field configurations in many other branches of physics and have a rich history9, although chiral condensed-matter systems so far have yielded realizations only of elementary full and fractional skyrmions. Here we describe stable, high-degree multi-skyrmion configurations where an arbitrary number of antiskyrmions are contained within a larger skyrmion. We call these structures skyrmion bags. We demonstrate them experimentally and numerically in liquid crystals and numerically in micromagnetic simulations either without or with magnetostatic effects. We find that skyrmion bags act like single skyrmions in pairwise interaction and under the influence of current in magnetic materials, and are thus an exciting proposition for topological magnetic storage and logic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Solitonic structures of a fractional skyrmion, skyrmion and skyrmionium.
Fig. 2: LC skyrmion bag configurations and decay of target skyrmions.
Fig. 3: Skyrmion bag configurations in chiral ferromagnets.
Fig. 4: Current-induced motions and data encoding of skyrmion bags.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. Bogdanov, A. & Yablonskii, D. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Zh. Eksp. Teor. Fiz 95, 178–182 (1989).

    Google Scholar 

  2. Cortes-Ortuno, D. et al. Thermal stability and topological protection of skyrmions in nanotracks. Sci. Rep. 7, 4060 (2017).

    Article  ADS  Google Scholar 

  3. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  4. Yu, X. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  ADS  Google Scholar 

  5. Smalyukh, I. I., Lansac, Y., Clark, N. A. & Trivedi, R. P. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nat. Mater. 9, 139–145 (2010).

    Article  ADS  Google Scholar 

  6. Ackerman, P. J., Trivedi, R. P., Senyuk, B., van de Lagemaat, J. & Smalyukh, I. I. Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics. Phys. Rev. E 90, 012505 (2014).

    Article  ADS  Google Scholar 

  7. Duzgun, A. & Selinger, J. V. Comparing skyrmions and merons in chiral liquid crystals and magnets. Phys. Rev. E 97, 062706 (2018).

    Article  ADS  Google Scholar 

  8. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  ADS  Google Scholar 

  9. Skyrme, T. H. R. A non-linear field theory. Proc. R. Soc. Lond. A 260, 127–138 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  10. Planner, J. Note about cholesterol. Ann. Chem. Pharm. 118, 25–27 (1861).

    Article  Google Scholar 

  11. Reinitzer, F. Beiträge zur Kenntniss des Cholesterins. Monatsh. Chem. 9, 421–441 (1888).

    Article  Google Scholar 

  12. Hornreich, R. M. & Shtrikman, S. Field-induced hexagonal blue phases in positive and negative dielectric anisotropy systems: phase diagrams and topological properties. Phys. Rev. A 41, 1978–1989 (1990).

    Article  ADS  Google Scholar 

  13. Senyuk, B. et al. Topological colloids. Nature 493, 200–205 (2013).

    Article  ADS  Google Scholar 

  14. Yu, X. Z. et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564, 95–98 (2018).

    Article  ADS  Google Scholar 

  15. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).

    Article  ADS  Google Scholar 

  16. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    Article  ADS  Google Scholar 

  17. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article  Google Scholar 

  18. Yu, X. Z. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).

    Article  ADS  Google Scholar 

  19. Zhang, X., Ezawa, M. & Zhou, Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).

    Article  ADS  Google Scholar 

  20. Melcher, C. Chiral skyrmions in the plane. Proc. R. Soc. A 470, 20140394 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  21. Ackerman, P. J., van de Lagemaat, J. & Smalyukh, I. I. Self-assembly and electrostriction of arrays and chains of hopfion particles in chiral liquid crystals. Nat. Commun. 6, 6012 (2015).

    Article  ADS  Google Scholar 

  22. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  ADS  Google Scholar 

  23. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  ADS  Google Scholar 

  24. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  ADS  Google Scholar 

  25. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  ADS  Google Scholar 

  26. Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett 44, 1538–1541 (1980).

    Article  ADS  Google Scholar 

  27. Takagi, R. et al. Spin-wave spectroscopy of the Dzyaloshinskii–Moriya interaction in room-temperature chiral magnets hosting skyrmions. Phys. Rev. B 95, 220406(R) (2017).

    Article  ADS  Google Scholar 

  28. Fodor, F. The densest packing of 13 congruent circles in a circle. Contrib. Algebr. Geom. 44, 431–440 (2003).

    MathSciNet  MATH  Google Scholar 

  29. Zhao, X. et al. Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks. Proc. Natl Acad. Sci. USA 113, 4918–4923 (2016).

    Article  ADS  Google Scholar 

  30. Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  ADS  Google Scholar 

  31. Tai, J.-S. B., Ackerman, P. J. & Smalyukh, I. I. Topological transformations of Hopf solitons in chiral ferromagnets and liquid crystals. Proc. Natl Acad. Sci. USA 115, 921–926 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  32. Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).

    Article  Google Scholar 

  33. Koshibae, W. & Nagaosa, N. Theory of skyrmions in bilayer systems. Sci. Rep. 7, 42645 (2017).

    Article  ADS  Google Scholar 

  34. Fook, H. T., Gan, W. L. & Lew, W. S. Gateable skyrmion transport via field-induced potential barrier modulation. Sci. Rep. 6, 21099 (2016).

    Article  ADS  Google Scholar 

  35. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4, 1463 (2013).

    Article  ADS  Google Scholar 

  36. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

D.F. and M.R.D. acknowledge the funding by the Leverhulme Trust Research Programme Grant RP2013-K-009, SPOCK: Scientific Properties Of Complex Knots. The authors also thank A. Bogdanov, M. Gradhand, A. Leonov, A. Saxena, P. M. Sutcliffe and W. Zakrzewski for comments. Research at CU-Boulder (P.J.A., J.-S.B.T. and I.I.S.) was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award ER46921, contract DE-SC0010305.

Author information

Authors and Affiliations

Authors

Contributions

C.K. originally discovered the skyrmion bag configurations. D.F. performed the theoretical analysis, with input from C.K. and M.R.D. P.J.A. and J.-S.B.T. performed the experiments with suggestions from I.I.S. and D.F. J.-S.B.T. performed the numerical analysis in LCs and C.K. in magnets. I.I.S. provided experimental techniques and materials and directed the LC component of the project. P.J.A., J.-S.B.T. and I.I.S. analysed the experimental data. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Mark R. Dennis or Ivan I. Smalyukh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Ingo Dierking and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary References 1–10.

Supplementary Video 1

A 6π-twist target skyrmion collapses to an elementary full skyrmion in liquid crystals.

Supplementary Video 2

A skyrmionium transforms smoothly into the uniform state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, D., Kind, C., Ackerman, P.J. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Phys. 15, 655–659 (2019). https://doi.org/10.1038/s41567-019-0476-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0476-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing