Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct imaging of orbitals in quantum materials

Abstract

The electronic states of quantum materials based on transition-metal, rare-earth and actinide elements are dominated by electrons in the d and f orbitals intertwined with the strong band formation of the solid. Until now, to estimate which specific orbitals contribute to the ground state and thereby determine their physical properties we have had to rely on theoretical calculations combined with spectroscopy. Here, we show that s-core-level non-resonant inelastic X-ray scattering can directly image the active orbital in real space, without the necessity for any modelling. The power and accuracy of this new technique is shown using the textbook example, x2 − y2/3z2 − r2 orbital of the Ni2+ ion in NiO single crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scattering geometry of the non-resonant inelastic X-ray scattering experiment.
Fig. 2: Experimental non-resonant inelastic X-ray scattering spectra of NiO containing the core level excitations on top of the Compton profile.
Fig. 3: Close-up view of the experimental Ni M1 (3s → 3d) edge spectra for different sample rotations and orientations. The spectra are background-corrected and normalized.
Fig. 4: Integrated intensities of M1 (3s → 3d) edge spectra plotted on the projections of the orbital shape of the 3A2 3d(x2 − y2)3d(3z2 − r2) hole density.
Fig. 5: Compton intensity as function of sample angle φ.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Cava, R. J. Oxide superconductors. J. Am. Ceram. Soc. 83, 5–28 (2008).

    Article  Google Scholar 

  2. Khomskii, D. I. Transition Metal Compounds (Cambridge Univ. Press, 2014).

  3. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  Google Scholar 

  4. Wirth, S. & Steglich, F. Exploring heavy fermions from macroscopic to microscopic length scales. Nat. Rev. Mater. 1, 16066 (2016).

    Article  Google Scholar 

  5. Pfleiderer, C. Superconducting phases of f-electron compounds. Rev. Mod. Phys. 81, 1551–1624 (2009).

    Article  ADS  Google Scholar 

  6. Fowles, G. R. Introduction to Modern Optics (Holt, Rinehart and Winston, 1968).

  7. Schülke, W. Electron Dynamics by Inelastic X-ray Scattering (Oxford Univ. Press, 2008).

  8. Haverkort, M. W., Tanaka, A., Tjeng, L. H. & Sawatzky, G. A. Nonresonant inelastic X-ray scattering involving excitonic excitations: the examples of NiO and CoO. Phys. Rev. Lett. 99, 257401 (2007).

    Article  ADS  Google Scholar 

  9. Gordon, R. A. et al. High multipole transitions in NICS: valence and hybridization in 4f systems. Europhys. Lett. 81, 26004 (2008).

    Article  ADS  Google Scholar 

  10. Gordon, R. A., Haverkort, M. W., SenGupta, S. & Sawatzky, G. A. Orientation-dependent X-ray Raman scattering from cubic crystals: natural linear dichroism in MnO and CeO2. J. Phys. Conf. Ser. 190, 012047 (2009).

    Article  Google Scholar 

  11. Bradley, J. A. et al. Probing electronic correlations in actinide materials using multipolar transitions. Phys. Rev. B 81, 193104 (2010).

    Article  ADS  Google Scholar 

  12. Caciuffo, R. et al. Uranium 5d−5f electric-multipole transitions probed by nonresonant inelastic X-ray scattering. Phys. Rev. B 81, 195104 (2010).

    Article  ADS  Google Scholar 

  13. Bradley, J. A., Moore, K. T., van der Laan, G., Bradley, J. P. & Gordon, R. A. Core and shallow-core d- to f-shell excitations in rare-earth metals. Phys. Rev. B 84, 205105 (2011).

    Article  ADS  Google Scholar 

  14. van der Laan, G. Spin–orbit sum rule for electric multipole transitions in nonresonant inelastic X-ray scattering. Phys. Rev. Lett. 108, 077401 (2012).

    Article  ADS  Google Scholar 

  15. van der Laan, G. Nonresonant inelastic X-ray scattering from actinides and rare earths. Phys. Rev. B 86, 035138 (2012).

    Article  ADS  Google Scholar 

  16. Willers, T. et al. Determining the in-plane orientation of the ground-state orbital of CeCu2Si2. Phys. Rev. Lett. 109, 046401 (2012).

    Article  ADS  Google Scholar 

  17. Chen, C. T. et al. Out-of-plane orbital characters of intrinsic and doped holes in La2−xSrxCuO4. Phys. Rev. Lett. 68, 2543–2546 (1992).

    Article  ADS  Google Scholar 

  18. de Groot, F. X-ray absorption and dichroism of transition metals and their compounds. J. Electron Spectros. 67, 529–622 (1994).

    Article  Google Scholar 

  19. Tanaka, A. & Jo, T. Resonant 3d, 3p and 3s photoemission in transition metal oxides predicted at 2p threshold. J. Phys. Soc. Jpn 63, 2788–2807 (1994).

    Article  ADS  Google Scholar 

  20. Csiszar, S. I. et al. Controlling orbital moment and spin orientation in CoO layers by strain. Phys. Rev. Lett. 95, 187205 (2005).

    Article  ADS  Google Scholar 

  21. Hansmann, P. et al. Determining the crystal-field ground state in rare earth heavy fermion materials using soft-X-ray absorption spectroscopy. Phys. Rev. Lett. 100, 066405 (2008).

    Article  ADS  Google Scholar 

  22. Sundermann, M. et al. Direct bulk-sensitive probe of 5f symmetry in URu2Si2. Proc. Natl Acad. Sci. USA 113, 13989–13994 (2016).

    Article  ADS  Google Scholar 

  23. Sundermann, M. et al. 4f crystal field ground state of the strongly correlated topological insulator SmB6. Phys. Rev. Lett. 120, 016402 (2018).

    Article  ADS  Google Scholar 

  24. Sawatzky, G. A. & Allen, J. W. Magnitude and origin of the band gap in NiO. Phys. Rev. Lett. 53, 2339–2342 (1984).

    Article  ADS  Google Scholar 

  25. Hamamoto, S. et al. Linear dichroism in angle-resolved core-level photoemission spectra reflecting 4f ground-state symmetry of strongly correlated cubic Pr compounds. J. Phys. Soc. Jpn 86, 123703 (2017).

    Article  ADS  Google Scholar 

  26. Thole, B. T., Carra, P., Sette, F. & van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–1946 (1992).

    Article  ADS  Google Scholar 

  27. Carra, P., Thole, B. T., Altarelli, M. & Wang, X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694–697 (1993).

    Article  ADS  Google Scholar 

  28. Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995).

    Article  ADS  Google Scholar 

  29. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article  ADS  Google Scholar 

  30. Jain, A. et al. Higgs mode and its decay in a two-dimensional antiferromagnet. Nat. Phys. 13, 633–637 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

M.S., K.C. and A.S. acknowledge support from the German funding agency DFG under grant no. SE1441-4-1.

Author information

Authors and Affiliations

Authors

Contributions

L.H.T. and M.W.H. initiated the project. H.Y., M.S., K.C., A.A. and H.G. performed the experiment and analysed the data. H.Y., A.S., M.W.H. and L.H.T. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Liu Hao Tjeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavaş, H., Sundermann, M., Chen, K. et al. Direct imaging of orbitals in quantum materials. Nat. Phys. 15, 559–562 (2019). https://doi.org/10.1038/s41567-019-0471-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0471-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing