Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actin dynamics drive cell-like membrane deformation

This article has been updated

Abstract

Cell membrane deformations are crucial for proper cell function. Specialized protein assemblies initiate inward or outward membrane deformations that the cell uses respectively to uptake external substances or probe the environment. The assembly and dynamics of the actin cytoskeleton are involved in this process, although their detailed role remains controversial. We show here that a dynamic, branched actin network is sufficient to initiate both inward and outward membrane deformation. The polymerization of a dense actin network at the membrane of liposomes produces inward membrane bending at low tension, while outward deformations are robustly generated regardless of tension. Our results shed light on the mechanism cells use to internalize material, both in mammalian cells, where actin polymerization forces are required when membrane tension is increased, and in yeast, where those forces are necessary to overcome the opposing turgor pressure. By combining experimental observations with physical modelling, we propose a mechanism that explains how membrane tension and the architecture of the actin network regulate cell-like membrane deformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental system and observations.
Fig. 2: Actin incorporation during tube formation.
Fig. 3: Tube length compared to network thickness.
Fig. 4: Actin incorporation in spikes.
Fig. 5: Model for spike initiation and tube formation.
Fig. 6: Dependence of membrane deformations on membrane tension and actin network mesh size.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon request.

Change history

  • 26 April 2019

    In the Supplementary Information initially published online for this Article, Supplementary Figs. 1, 2, 4, 5, 8–11 were corrupted; these have now been corrected.

References

  1. Kukulski, W., Schorb, M., Kaksonen, M. & Briggs, J. A. Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 150, 508–520 (2012).

    Article  Google Scholar 

  2. Picco, A., Mund, M., Ries, J., Nedelec, F. & Kaksonen, M. Visualizing the functional architecture of the endocytic machinery. Elife 4, e04535 (2015).

    Article  Google Scholar 

  3. Picco, A. et al. The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Mol. Biol. Cell 29, 1346–1358 (2018).

    Article  Google Scholar 

  4. Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13, 1124–1131 (2011).

    Article  Google Scholar 

  5. Korobova, F. & Svitkina, T. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol. Biol. Cell 21, 165–176 (2010).

    Article  Google Scholar 

  6. Liu, A. P. et al. Membrane induced bundling of actin filaments. Nat. Phys. 4, 789–793 (2008).

    Article  Google Scholar 

  7. van der Gucht, J., Paluch, E., Plastino, J. & Sykes, C. Stress release drives symmetry breaking for actin-based movement. Proc. Natl Acad. Sci. USA 102, 7847–7852 (2005).

    Article  ADS  Google Scholar 

  8. Carvalho, K. et al. Actin polymerization or myosin contraction: two ways to build up cortical tension for symmetry breaking. Phil. Trans. R. Soc. B 368, 20130005 (2013).

    Article  Google Scholar 

  9. Paluch, E., Piel, M., Prost, J., Bornens, M. & Sykes, C. Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 89, 724–733 (2005).

    Article  Google Scholar 

  10. Akin, O. & Mullins, R. D. Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 133, 841–851 (2008).

    Article  Google Scholar 

  11. Kawska, A. et al. How actin network dynamics control the onset of actin-based motility. Proc. Natl Acad. Sci. USA 109, 14440–14445 (2012).

    Article  ADS  Google Scholar 

  12. Pernier, J., Shekhar, S., Jegou, A., Guichard, B. & Carlier, M.-F. Profilin interaction with actin filament barbed end controls dynamic instability. Dev. Cell 36, 201–214 (2016).

    Article  Google Scholar 

  13. Julicher, F., Kruse, K., Prost, J. & Joanny, J. F. Active behavior of the cytoskeleton. Phys. Rep. 449, 3–28 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  14. Gardel, M. L. et al. Scaling of F-actin network rheology to probe single filament elasticity and dynamics. Phys. Rev. Lett. 93, 188102 (2004).

    Article  ADS  Google Scholar 

  15. Gardel, M. L., Kasza, K. E., Brangwynne, C. P., Liu, J. & Weitz, D. A. Chapter 19: Mechanical response of cytoskeletal networks. Methods Cell Biol. 89, 487–519 (2008).

    Article  Google Scholar 

  16. Noireaux, V. et al. Growing an actin gel on spherical surfaces. Biophys. J. 78, 1643–1654 (2000).

    Article  ADS  Google Scholar 

  17. Mogilner, A. & Rubinstein, B. The physics of filopodial protrusion. Biophys. J. 89, 782–795 (2005).

    Article  Google Scholar 

  18. Prost, J., Barbetta, C. & Joanny, J. F. Dynamical control of the shape and size of stereocilia and microvilli. Biophys. J. 93, 1124–1133 (2007).

    Article  ADS  Google Scholar 

  19. Deserno, M. Fluid lipid membranes: from differential geometry to curvature stresses. Chem. Phys. Lipids 185, 11–45 (2015).

    Article  Google Scholar 

  20. Marcy, Y., Prost, J., Carlier, M.-F. & Sykes, C. Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proc. Natl Acad. Sci. USA 101, 5993–5997 (2004).

    Article  ADS  Google Scholar 

  21. Caorsi, V. et al. Cell-sized liposome doublets reveal active tension build-up driven by acto-myosin dynamics. Soft Matter 12, 6223–6231 (2016).

    Article  ADS  Google Scholar 

  22. Kroy, K. & Frey, E. Force-extension relation and plateau modulus for wormlike chains. Phys. Rev. Lett. 77, 306–309 (1996).

    Article  ADS  Google Scholar 

  23. Isambert, H. et al. Flexibility of actin filaments derived from thermal fluctuations. J. Biol. Chem. 270, 11437–11444 (1995).

    Article  Google Scholar 

  24. Derenyi, I., Julicher, F. & Prost, J. Formation and interaction of membrane tubes. Phys. Rev. Lett. 88, 238101 (2002).

    Article  ADS  Google Scholar 

  25. Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005).

    Article  Google Scholar 

  26. Smith, B. A. et al. Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation. Elife 2, e01008 (2013).

    Article  Google Scholar 

  27. Liu, A. P. & Fletcher, D. A. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. 91, 4064–4070 (2006).

    Article  ADS  Google Scholar 

  28. Wang, X. & Carlsson, A. E. A master equation approach to actin polymerization applied to endocytosis in yeast. PLoS Comput. Biol. 13, e1005901 (2017).

    Article  ADS  Google Scholar 

  29. Carlsson, A. E. Membrane bending by actin polymerization. Curr. Opin. Cell Biol. 50, 1–7 (2017).

    Article  Google Scholar 

  30. Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nat. Cell Biol. 11, 1039–1042 (2009).

    Article  Google Scholar 

  31. Dmitrieff, S. & Nedelec, F. Membrane mechanics of endocytosis in cells with turgor. PLoS Comput. Biol. 11, e1004538 (2015).

    Article  ADS  Google Scholar 

  32. Gerbal, F., Chaikin, P., Rabin, Y. & Prost, J. An elastic analysis of Listeria monocytogenes propulsion. Biophys. J. 79, 2259 (2000).

    Article  Google Scholar 

  33. Sun, Y. et al. Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins in vivo. Elife 6, e29140 (2017).

    Article  Google Scholar 

  34. Co, C., Wong, D., Gierke, S., Chang, V. & Taunton, J. Mechanism of actin network attachment to moving membranes: barbed end capture by. Cell 128, 901–913 (2007).

    Article  Google Scholar 

  35. Lan, Y. & Papoian, G. A. The stochastic dynamics of filopodial growth. Biophys. J. 94, 3839–3852 (2008).

    Article  ADS  Google Scholar 

  36. Atilgan, E., Wirtz, D. & Sun, S. X. Mechanics and dynamics of actin-driven thin membrane protrusions. Biophys. J. 90, 65–76 (2006).

    Article  ADS  Google Scholar 

  37. Hotulainen, P. et al. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J. Cell Biol. 185, 323–339 (2009).

    Article  Google Scholar 

  38. Palmgren, S., Ojala, P. J., Wear, M. A., Cooper, J. A. & Lappalainen, P. Interactions with PIP2, ADP-actin monomers, and capping protein regulate the activity and localization of yeast twinfilin. J. Cell Biol. 155, 251–260 (2001).

    Article  Google Scholar 

  39. Havrylenko, S. et al. WAVE binds Ena/VASP for enhanced Arp2/3 complex–based actin assembly. Mol. Biol. Cell 26, 55–65 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge A. Kawska at IlluScientia.com for the figures. We thank J. Pernier for suggesting the excess profiling experiment for loosening the actin network. This work was supported by the French Agence Nationale pour la Recherche (ANR), grants ANR 09BLAN0283 and ANR 12BSV5001401, by Fondation pour la Recherche Médicale, grant DEQ20120323737, by the LabEx CelTisPhyBio postdoctoral fellowship (M.L.), no. ANR-10-LBX-0038 part of the IDEX PSL NANR- 10-IDEX-0001-02 PSL, by Marie Curie Integration Grant PCIG12-GA-2012-334053, ‘Investissements d’Avenir’ LabEx PALM (ANR-10-LABX-0039-PALM), ANR grant ANR-15-CE13-0004-03 and ERC Starting Grant 677532. Our groups belong to the CNRS consortium CellTiss. This work was supported by grants from the French National Research Agency through the ‘Investments for the Future’ (France-BioImaging, ANR-10-INSB-04), the PICT-IBiSA Institut Curie (Paris, France).

Author information

Authors and Affiliations

Authors

Contributions

C.S., R.K. and V.C. have equal contributions. C.S. and V.C. performed experiments and analysed data. R.K. performed the development of theoretical models. A.A. M.A.-G., J.M., A.D.C., D.L., C.C. and J.P. contributed to experimental data; M.L. and J.-F.J. contributed to the development of the model; P.S. and C.S. designed the research. All authors contributed to writing the paper.

Corresponding authors

Correspondence to Pierre Sens or Cécile Sykes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Allen Liu and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary References 1–14 and Supplementary Figures 1–11

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, C., Kusters, R., Caorsi, V. et al. Actin dynamics drive cell-like membrane deformation. Nat. Phys. 15, 602–609 (2019). https://doi.org/10.1038/s41567-019-0464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0464-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing