Bacteria display optimal transport near surfaces

Abstract

The near-surface swimming patterns of bacteria are determined by hydrodynamic interactions between the bacteria and the surface, which trap the bacteria in smooth circular trajectories that lead to inefficient surface exploration. Here, we combine experiments with a data-driven mathematical model to show that the surface exploration of a pathogenic strain of Escherichia coli results from a complex interplay between motility and transient surface adhesion events. These events allow the bacteria to break the smooth circular trajectories and regulate their transport properties by exploiting stop events that are facilitated by surface adhesion and lead to characteristic intermittent motion on surfaces. We find that the experimentally measured frequency of these stop-adhesion events coincides with the value that maximizes bacterial surface diffusivity according to our mathematical model. We discuss the applicability of our experimental and theoretical results to other bacterial strains on different surfaces. Our findings suggest that swimming bacteria use transient adhesion as a generic mechanism to regulate surface motion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental trajectories and their statistics.
Fig. 2: Evidence for three states.
Fig. 3: Diffusion coefficient.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon request.

References

  1. 1.

    Berg, H. C. & Brown, D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972).

    ADS  Article  Google Scholar 

  2. 2.

    Berg, H. C. Random Walks in Biology (Princeton Univ. Press, 1993)..

  3. 3.

    Berg, H. C. E. coli in Motion (Springer-Verlag, 2004)..

  4. 4.

    Weis, R. M. & Koshland, D. E. Chemotaxis in Escherichia coli proceeds efficiently from different initial tumble frequencies. J. Bacteriol. 172, 1099–1105 (1990).

    Article  Google Scholar 

  5. 5.

    Schnitzer, M. J. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553–2568 (1993).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Tindall, M. J., Gaffney, E. A., Maini, P. K. & Armitage, J. P. Theoretical insights into bacterial chemotaxis. WIREs Syst. Biol. Med. 4, 247–259 (2012).

    Article  Google Scholar 

  7. 7.

    Cates, M. Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Rep. Prog. Phys. 75, 042601 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Flores, M., Shimizu, T. S., ten Wolde, P. R. & Tostevin, F. Signaling noise enhances chemotactic drift of E. coli. Phys. Rev. Lett. 109, 148101 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Zhang, H. P., Beer, A., Florin, E.-L. & Swinney, H. L. Collective motion and density fluctuations in bacterial colonies. Proc. Natl Acad. Sci. USA 107, 13626–13630 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Peruani, F. et al. Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Phys. Rev. Lett. 108, 098102 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Ariel, G. et al. Swarming bacteria migrate by levy walk. Nat. Commun. 6, 8396 (2016).

    Article  Google Scholar 

  12. 12.

    Berke, A. P., Turner, L., Berg, H. C. & Lauga, E. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102 (2008).

    ADS  Article  Google Scholar 

  13. 13.

    Di Leonardo, R., DellArciprete, D., Angelani, L. & Iebba, V. Swimming with an image. Phys. Rev. Lett. 106, 038101 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. USA 108, 10940–10945 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Spagnolie, S. E. & Lauga, E. Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105–147 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Schaar, K., Zöttl, A. & Stark, H. Detention times of microswimmers close to surfaces: influence of hydrodynamic interactions and noise. Phys. Rev. Lett. 115, 038101 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Vigeant, M. A. & Ford, R. M. Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope. Appl. Environ. Microbiol. 63, 3474 (1997).

    Google Scholar 

  18. 18.

    Molaei, M., Barry, M., Stocker, R. & Sheng, J. Failed escape: solid surfaces prevent tumbling of Escherichia coli. Phys. Rev. Lett. 113, 068103 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Molaei, M. & Shen, J. Succeed escape: flow shear promotes tumbling of Escherichia coli near a solid surface. Sci. Rep. 6, 35290 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Frymier, P. D., Ford, R. M., Berg, H. C. & Cummings, P. T. Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl Acad. Sci. USA 92, 6195–6199 (1995).

    ADS  Article  Google Scholar 

  21. 21.

    Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006).

    ADS  Article  Google Scholar 

  22. 22.

    Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Li, G., Tam, L.-K. & Tang, J. X. Amplified effect of Brownian motion in bacterial near-surface swimming. Proc. Natl Acad. Sci. USA 105, 18355–18359 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers: single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 056601 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    Hu, J., Wysocki, A., Winkler, R. G. & Gompper, G. Physical sensing of surface properties by microswimmers–directing bacterial motion via wall slip. Sci. Rep. 5, 09586 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Bianchi, S., Saglimbeni, F. & Di Leonardo, R. Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys. Rev. X 7, 011010 (2017).

    Google Scholar 

  27. 27.

    Clements, A., Young, J. C., Constantinou, N. & Frankel, G. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 3, 71–87 (2012).

    Article  Google Scholar 

  28. 28.

    Pratt, L. A. & Kolter, R. Genetic analysis of microscope of Escherichia coli biofilm formation: foles of flagella, motility and type I pili. Mol. Microbiol. 30, 285–293 (1998).

    Article  Google Scholar 

  29. 29.

    Wood, T. K., González Barrios, A. F., Herzberg, M. & Lee, J. Motility influences biofilm architecture in Escherichia coli. Appl. Microbiol. Biotechnol. 72, 361–367 (2006).

    Article  Google Scholar 

  30. 30.

    Conrad, J. C. Physics of bacterial near-surface motility using flagella and type iv pili: implications for biofilm formation. Res. Microbiol. 163, 619 (2012).

    Article  Google Scholar 

  31. 31.

    Conrad, J. C. et al. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys. J. 100, 1608–1616 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    McWilliams, B. D. & Torres, A. G. Enterohemorrahagic Escherichia coli adhesins. Microbiol. Spectrum 2, EHEC–0003 (2013).

    Google Scholar 

  33. 33.

    Turner, L., Ping, L., Neubauer, M. & Berg, H. C. Visualizing flagella while tracking bacteria. Biophys. J. 111, 630–639 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Silverman, M. & Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974).

    ADS  Article  Google Scholar 

  35. 35.

    van Teeffelen, S. & Löwen, H. Dynamics of a Brownian circle swimmer. Phys. Rev. E 78, 020101 (2008).

    Article  Google Scholar 

  36. 36.

    Ebbens, S., Jones, R. A. L., Ryan, A. J., Golestanian, R. & Howse, J. R. Self-assembled autonomous runners and tumblers. Phys. Rev. E 82, 015304 (2010).

    ADS  Article  Google Scholar 

  37. 37.

    Kümmel, F. et al. Circular motion of asymmetric self-propelling particles. Phys. Rev. Lett. 110, 198302 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Sauer, M. M. et al. Catch-bond mechanism of the bacterial adhesin fimh. Nat. Commun. 7, 10738 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Busscher, H. J. & van der Mei, H. C. How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathogens 8, e1002440 (2012).

    Article  Google Scholar 

  40. 40.

    Nord, A. L. et al. Catch bond drives stator mechanosensitivity in the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 114, 12952–12957 (2017).

    Article  Google Scholar 

  41. 41.

    Adam, G. & Delbrück, M. In Structural Chemistry and Molecular Biology (eds Rich, A. & Davidson N.) 198–215 (W. H. Freeman, 1968).

  42. 42.

    Clark, D. A. & Grant, L. C. The bacterial chemotactic response reflects a compromise between transient and steady-state behavior. Proc. Natl Acad. Sci. USA 102, 9150–9155 (2005).

    ADS  Article  Google Scholar 

  43. 43.

    Vergassola, M., Villermaux, E. & Shraiman, B. I. Infotaxis as a strategy for searching without gradients. Nature 445, 406–409 (2007).

    ADS  Article  Google Scholar 

  44. 44.

    Fang, X. & Gomelsky, M. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol. Microbiol. 76, 1295–1305 (2010).

    Article  Google Scholar 

  45. 45.

    Cookson, A. L., Cooley, W. A. & Woodward, M. J. The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int. J. Med. Microbiol. 292, 195–205 (2002).

    Article  Google Scholar 

  46. 46.

    Nilsson, L. M., Thomas, W. E., Trintchina, E., Vogel, V. & Sokurenk, E. V. Shear-enhanced adhesion of E. coli to trimannose. J. Biol. Chem. 281, 16656 (2006).

    Article  Google Scholar 

  47. 47.

    Fletcher, M. Bacterial biofilms and biofouling. Curr. Opin. Biotechnol. 5, 302–306 (1994).

    Article  Google Scholar 

  48. 48.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  Google Scholar 

  49. 49.

    Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012).

    Article  Google Scholar 

  50. 50.

    Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Gómez Nava, R. Großmann, A. Be’er, and G. and G. Volpe for insightful comments on the text. Experiments were performed at the C3M Imaging Core Facility (Microscopy and Imaging platform Côte d’Azur, MICA). We acknowledge support from grant ANR-15-CE30-0002-01 (project ‘BactPhys’) and from Biocodex SA (Gentilly, France).

Author information

Affiliations

Authors

Contributions

D.C. and F.P. designed the study. D.C. and R.P.-B. performed experiments. E.P.I., S.O. and F.P. performed the image and statistical analysis of the data and derived the mathematical models used to interpret the data. F.P. wrote the manuscript with the help of all authors.

Corresponding author

Correspondence to Fernando Peruani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8 and Supplementary Table 1.

Reporting Summary

Supplementary Video 1

E. coli motion close to a surface, highlighting a bacterium with circular motion.

Supplementary Video 2

E. coli motion close to a surface, highlighting a bacterium with circular motion interrupted by jumps in the moving direction.

Supplementary Video 3

E. coli motion close to a surface, highlighting a bacterium with straight trajectories interrupted by jumps in the moving direction.

Supplementary Video 4

Same trajectory as in Supplementary Video 3, additionally showing the evolution of the speed of the bacterium.

Supplementary Video 5

An E. coli bacterium’s smooth motion is interrupted by a process in which the bacterium quickly rotates on a fixed spot on the glass surface. The motion resembles bacterial tethering.

Supplementary Video 6

An E. coli bacterium showing several events of adhesion with different durations. Events are labelled from A to D. A and C are short events with a duration within the timescale of the state zero. C and D show a larger duration corresponding

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez Ipiña, E., Otte, S., Pontier-Bres, R. et al. Bacteria display optimal transport near surfaces. Nat. Phys. 15, 610–615 (2019). https://doi.org/10.1038/s41567-019-0460-5

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing