From networks to optimal higher-order models of complex systems

Abstract

Rich data are revealing that complex dependencies between the nodes of a network may not be captured by models based on pairwise interactions. Higher-order network models go beyond these limitations, offering new perspectives for understanding complex systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Different approaches to model an ego network with higher-order dependencies between nodes.
Fig. 2: Non-Markovian higher-order models can better capture the topology of paths in complex systems.
Fig. 3: Community detection of paths can capture overlapping communities.
Fig. 4: Non-Markovian paths change the centrality of nodes in time-stamped social network data.
Fig. 5: De Bruijn graphs with m dimensions help generalize network analytic methods to higher-order models.
Fig. 6: Non-Markovian paths in networked systems influence the evolution of diffusion processes.

References

  1. 1.

    Newman, M. E. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).

  2. 2.

    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

  3. 3.

    Newman, M. E. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006).

  4. 4.

    Estrada, E. & Higham, D. J. Network properties revealed through matrix functions. SIAM Rev. 52, 696–714 (2010).

  5. 5.

    Porter, M. A. & Gleeson, J. P. Dynamical Systems on Networks: A Tutorial (Springer, 2006).

  6. 6.

    Even, S. Graph Algorithms (Cambridge Univ. Press, 2011).

  7. 7.

    Seary, A. J. & Richards, W. D. Spectral methods for analyzing and visualizing networks: an introduction. In Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers 209–228 (The National Academies Press, 2000).

  8. 8.

    De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. The physics of spreading processes in multilayer networks. Nat. Phys. 12, 901–906 (2016).

  9. 9.

    Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).

  10. 10.

    Scholtes, I. et al. Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks. Nat. Commun. 5, 5024 (2014).

  11. 11.

    Scholtes, I., Wider, N. & Garas, A. Higher-order aggregate networks in the analysis of temporal networks: path structures and centralities. Eur. Phys. J. B 89, 61 (2016).

  12. 12.

    Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D. & Lambiotte, R. Memory in network flows and its effects on spreading dynamics and community detection. Nat. Commun. 5, 5630 (2014).

  13. 13.

    Benson, A. R. Three hypergraph eigenvector centralities. Preprint at https://arxiv.org/abs/1807.09644 (2018).

  14. 14.

    Benson, A. R., Gleich, D. F. & Leskovec, J. Higher-order organization of complex networks. Science 353, 163–166 (2016).

  15. 15.

    Xu, J., Wickramarathne, T. L. & Chawla, N. V. Representing higher-order dependencies in networks. Sci. Adv. 2, e1600028 (2016).

  16. 16.

    Peixoto, T. P. & Rosvall, M. Modelling sequences and temporal networks with dynamic community structures. Nat. Commun. 8, 582 (2017).

  17. 17.

    Scholtes, I. When is a network a network? Multi-order graphical model selection in pathways and temporal networks. In Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘17 1037–1046 (ACM, 2017).

  18. 18.

    Schaub, M. T., Benson, A. R., Horn, P., Lippner, G. & Jadbabaie, A. Random walks on simplicial complexes and the normalized hodge laplacian. Preprint at https://arxiv.org/abs/1807.05044 (2018).

  19. 19.

    Kivelä, M. et al. Multilayer networks. J. Complex Netw. 2, 203–271 (2014).

  20. 20.

    Arenas, A., Fernandez, A., Fortunato, S. & Gomez, S. Motif-based communities in complex networks. J. Phys. A 41, 224001 (2008).

  21. 21.

    Jiang, X., Lim, L.-H., Yao, Y. & Ye, Y. Statistical ranking and combinatorial hodge theory. Math. Program. 127, 203–244 (2011).

  22. 22.

    Petri, G., Scolamiero, M., Donato, I. & Vaccarino, F. Topological strata of weighted complex networks. PLoS ONE 8, e66506 (2002).

  23. 23.

    Cardillo, A. et al. Modeling the multi-layer nature of the European Air Transport Network: resilience and passengers re-scheduling under random failures. Eur. Phys. J. Spec. Top. 215, 23–33 (2013).

  24. 24.

    Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

  25. 25.

    Battiston, S., Caldarelli, G. & D’Errico, M. in Interconnected Networks (ed. Garas, A.) 195–229 (Springer, 2016).

  26. 26.

    Moreno, J. L. Who Shall Survive? A New Approach to the Problem of Human Interrelations (Beacon House, 1934).

  27. 27.

    Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

  28. 28.

    Halu, A., Mondragón, R. J., Panzarasa, P. & Bianconi, G. Multiplex PageRank. PLoS ONE 8, e78293 (2013).

  29. 29.

    De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S. & Arenas, A. Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015).

  30. 30.

    Granovetter, M. S. The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).

  31. 31.

    Patania, A., Petri, G. & Vaccarino, F. The shape of collaborations. EPJ Data Sci. 6, 18 (2017).

  32. 32.

    Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

  33. 33.

    Paranjape, A., Benson, A. R. & Leskovec, J. Motifs in temporal networks. In Proc. 10th ACM International Conference on Web Search and Data Mining 601–610 (ACM, 2017).

  34. 34.

    Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).

  35. 35.

    Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science 360, eaao1729 (2018).

  36. 36.

    Ghoshal, G., Zlatić, V., Caldarelli, G. & Newman, M. E. Random hypergraphs and their applications. Phys. Rev. E 79, 066118 (2009).

  37. 37.

    Mukherjee, S. & Steenbergen, J. Random walks on simplicial complexes and harmonics. Random Struct. Algorithms 49, 379–405 (2016).

  38. 38.

    Boissonnat, J.-D., Chazal, F. & Yvinec, M. Geometric and Topological Inference Vol. 57 (Cambridge Univ. Press, 2018).

  39. 39.

    Liljeros, F., Giesecke, J. & Holme, P. The contact network of inpatients in a regional healthcare system. A longitudinal case study. Math. Popul. Stud. 14, 269–284 (2007).

  40. 40.

    Karsai, M., Kaski, K. & Kertész, J. Correlated dynamics in egocentric communication networks. PLoS ONE 7, e40612 (2012).

  41. 41.

    Pfitzner, R., Scholtes, I., Garas, A., Tessone, C. J. & Schweitzer, F. Betweenness preference: quantifying correlations in the topological dynamics of temporal networks. Phys. Rev. Lett. 110, 198701 (2013).

  42. 42.

    Wei, W. & Carley, K. M. Measuring temporal patterns in dynamic social networks. ACM Trans. Knowl. Discov. Data 10, 9 (2015).

  43. 43.

    Lentz, H. H. K., Selhorst, T. & Sokolov, I. M. Unfolding accessibility provides a macroscopic approach to temporal networks. Phys. Rev. Lett. 110, 118701 (2013).

  44. 44.

    Koher, A., Lentz, H. H. K., Hövel, P. & Sokolov, I. M. Infections on temporal networks — a matrix-based approach. PLoS ONE 11, e0151209 (2016).

  45. 45.

    Matamalas, J. T., De Domenico, M. & Arenas, A. Assessing reliable human mobility patterns from higher order memory in mobile communications. J. R. Soc. Interface 13, 20160203 (2016).

  46. 46.

    Asztalos, A. & Toroczkai, Z. Network discovery by generalized random walks. Europhys. Lett. 92, 50008 (2010).

  47. 47.

    Palla, G. et al. Complex clinical pathways of an autoimmune disease. J. Complex Netw. 6, 206–214 (2017).

  48. 48.

    Box, G. E., Jenkins, G. M. & Reinsel, G. C. Time Series Analysis: Forecasting and Control (John Wiley & Sons, 2013).

  49. 49.

    Salzberg, S. L., Delcher, A. L., Kasif, S. & White, O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26, 544–548 (1998).

  50. 50.

    Benson, A. R., Gleich, D. F. & Lim, L.-H. The spacey random walk: a stochastic process for higher-order data. SIAM Rev. 59, 321–345 (2017).

  51. 51.

    Lu, X., Wetter, E., Bharti, N., Tatem, A. J. & Bengtsson, L. Approaching the limit of predictability in human mobility. Sci. Rep. 3, 2923 (2013).

  52. 52.

    Chierichetti, F., Kumar, R., Raghavan, P. & Sarlós, T. Are web users really Markovian? In Proc. 21st Int. Conf. on World Wide Web 609–618 (ACM, 2012).

  53. 53.

    Singer, P., Helic, D., Taraghi, B. & Strohmaier, M. Detecting memory and structure in human navigation patterns using Markov chain models of varying order. PLoS ONE 9, e114952 (2014).

  54. 54.

    Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

  55. 55.

    Dunning, T. Statistical Identification of Language Technical Report (Computing Research Laboratory, 1994).

  56. 56.

    Edler, D. et al. Mapping higher-order network flows in memory and multilayer networks with Infomap. Algorithms 10, 112 (2017).

  57. 57.

    Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).

  58. 58.

    Persson, C., Bohlin, L., Edler, D. & Rosvall, M. Maps of sparse Markov chains efficiently reveal community structure in network flows with memory. Preprint at https://arxiv.org/abs/1606.08328 (2016).

  59. 59.

    Borgatti, S. P. Centrality and network flow. Soc. Netw. 27, 55–71 (2005).

  60. 60.

    Brandes, U., Heine, M., Müller, J. & Ortmann, M. Positional dominance: concepts and algorithms. In Conf. Algorithms and Discrete Applied Mathematics 60–71 (Springer, 2017).

  61. 61.

    Freeman, L. A set of measures of centrality based on betweeneess. Sociometry 40, 35–41 (1977).

  62. 62.

    de Bruijn, N. G. A combinatorial problem. Proc. K. Ned. Akad. Wet. 49, 758–764 (1946).

  63. 63.

    Zhang, Y., Garas, A. & Scholtes, I. Controllability of temporal networks: an analysis using higher-order networks. Preprint at https://arxiv.org/abs/1701.06331 (2017).

  64. 64.

    Ciftcioglu, E. N., Ramanathan, R. & Basu, P. Generative models for global collaboration relationships. Sci. Rep. 7, 11160 (2017).

  65. 65.

    2013 Journal Citation Reports® (Thomson Reuters, 2013).

Download references

Acknowledgements

M.R. was supported by the Swedish Research Council, grant 2016-00796. I.S. acknowledges support by the Swiss National Science Foundation, grant 176938.

Author information

Correspondence to Ingo Scholtes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks David Gleich and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 15, 313–320 (2019). https://doi.org/10.1038/s41567-019-0459-y

Download citation

Further reading