Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Symmetry-enforced chiral hinge states and surface quantum anomalous Hall effect in the magnetic axion insulator Bi2–xSmxSe3

Abstract

The existence of topological hinge states is a key signature for a newly proposed class of topological matter, the second-order topological insulators. In the present paper, a universal mechanism to generate chiral hinge states in the ferromagnetic axion insulator phase is introduced, which leads to an exotic transport phenomenon, the quantum anomalous Hall effect (QAHE) on some particular surfaces determined by both the crystalline symmetry and the magnetization direction. A realistic material system, Sm-doped Bi2Se3, is then proposed to realize such exotic hinge states by combining first-principles calculations and Green’s function techniques. A physically accessible way to manipulate the surface QAHE is also proposed, which makes it very different from the QAHE in ordinary 2D systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic demonstration for the emergence of hinge states.
Fig. 2: The structure proposed for the calculation of the hinge states.
Fig. 3: The projected spectral functions on the interface layer and their spatial distribution.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Ryu, S. et al. Topological origin of zero-energy edge states in particle–hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002).

    Article  ADS  Google Scholar 

  2. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  ADS  Google Scholar 

  3. Wang, Z. et al. Hourglass fermions. Nature 532, 189–194 (2016).

    Article  ADS  Google Scholar 

  4. Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  5. Kane, C. L. et al. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  6. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).

    Article  Google Scholar 

  7. Benalcazar, W. A. et al. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).

    Article  ADS  Google Scholar 

  8. Langbehn, J. et al. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 119, 246401 (2017).

    Article  ADS  Google Scholar 

  9. Ezawa, M. Magnetic second-order topological insulators and semimetals. Phys. Rev. B 97, 155305 (2018).

    Article  ADS  Google Scholar 

  10. Schindler, Frank et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).

    Article  ADS  Google Scholar 

  11. Benalcazar, W. A. et al. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  12. Song, Z. et al. (d − 2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017).

    Article  ADS  Google Scholar 

  13. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

    Article  Google Scholar 

  14. Fang, C. et al. Rotation anomaly and topological crystalline insulators. Preprint at https://arxiv.org/abs/1709.01929 (2017).

  15. Ari, M. T. et al. Entanglement and inversion symmetry in topological insulators. Phys. Rev. B 82, 241102(R) (2012).

    Google Scholar 

  16. Taylor, L. H. et al. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    Article  Google Scholar 

  17. Eslam, K. Higher-order topological insulators and superconductors protected by inversion symmetry. Phys. Rev. B 97, 205136 (2018).

    Article  Google Scholar 

  18. Zhida, S. et al. Quantitative mappings between symmetry and topology in solids. Nat. Commun. 9, 3530 (2018).

    Article  ADS  Google Scholar 

  19. Eslam, K. et al. Symmetry indicators and anomalous surface states of topological crystalline insulators. Phys. Rev. X 8, 031070 (2018).

    Google Scholar 

  20. Xiaoting, Z. et al. Topological crystalline insulator states in the Ca2As family. Phys. Rev. B 98, 241104 (2018).

    Article  Google Scholar 

  21. Hassan, S. et al. Topological crystalline superconductivity and second-order topological superconductivity in nodal-loop materials. Phys. Rev. B 97, 094508 (2018).

    Article  ADS  Google Scholar 

  22. Yizhi, Y. et al. Higher order symmetry-protected topological states for interacting bosons and fermions. Phys. Rev. B 98, 235102 (2018).

    Article  ADS  Google Scholar 

  23. Sheng-Jie, H. et al. Building crystalline topological phases from lower-dimensional states. Phy. Rev. B 96, 205106 (2017).

    Article  ADS  Google Scholar 

  24. Hasan, M. Z. et al. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  25. Qi, X.-L. et al. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  26. Yoichi, A. et al. Topological crystalline insulators and topological superconductors: from concepts to materials. Ann. Rev. Cond. Mat. Phys. 6, 361–381 (2015).

    Article  Google Scholar 

  27. Po, H. C. et al. Complete theory of symmetry-based indicators of band topology. Nat. Commun. 8, 50 (2017).

    Article  ADS  Google Scholar 

  28. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article  ADS  Google Scholar 

  29. Soluyanov, A. A. et al. Wannier representation of topological insulators. Phys. Rev. B 83, 035108 (2011).

    Article  ADS  Google Scholar 

  30. Klitzing, K. V. et al. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  31. Mong, R. S. K. et al. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010).

    Article  ADS  Google Scholar 

  32. Nomura, K. et al. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys. Rev. Lett. 106, 166802 (2011).

    Article  ADS  Google Scholar 

  33. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  ADS  Google Scholar 

  34. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  Google Scholar 

  35. Haldane, F. D. M. Model for a quantum hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett 61, 2015–2018 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  36. Liang, Wu et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3d topological insulator. Science 354, 1124–1127 (2016).

    Article  MathSciNet  Google Scholar 

  37. Luka, T. et al. Higher-order bulk-boundary correspondence for topological crystalline phases. Phys. Rev. X 9, 011012 (2019).

    Google Scholar 

  38. Chen, T. et al. High-mobility Sm-doped Bi2Se3 ferromagnetic topological insulators and robust exchange coupling. Adv. Mater. 27, 4819–4823 (2015).

    Google Scholar 

  39. Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    Article  ADS  Google Scholar 

  40. Qi, X.-L. et al. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  41. Essin, A. M. et al. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Article  ADS  Google Scholar 

  42. Ari, M. T. et al. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).

    Article  Google Scholar 

  43. Zhang, F. et al. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett. 110, 046404 (2013).

    Article  ADS  Google Scholar 

  44. Sancho., M. P. L. et al. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F 15, 851 (1985).

    Article  ADS  Google Scholar 

  45. Zhi, R. et al. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 82, 241306 (2010).

    Article  Google Scholar 

  46. Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    Article  ADS  Google Scholar 

  47. Kresse, G. et al. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  Google Scholar 

  48. Kresse, G. et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci 6, 15–50 (1996).

    Article  Google Scholar 

  49. Kresse, G. et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  50. Arash, A. M. et al. An updated version of wannier90: a tool for obtaining maximally-localized Wannier functions. Com. Phys. Comm. 185, 2309–2310 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B.A. Bernevig and T. Neupert for helpful discussions. X.D., C.F. and H.M.W. are supported by the Ministry of Science and Technology of China (grant no. 2016YFA0300600) and the K.C. Wong Education Foundation (grant no. GJTD-2018-01). X.D. acknowledges financial support from the Hong Kong Research Grants Council (project no. GRF16300918). C.F. acknowledges financial support from the Ministry of Science and Technology of China (grant no. 2016YFA0302400), the Natural Science Foundation of China (grant no. 11674370), the Chinese Academy of Sciences (no. XXH13506-202, XDB28000000), the Beijing Municipal Science & Technology Commission (no. Z181100004218001) and the Beijing Natural Science Foundation (no. Z180008). H.M.W. is also supported by the Ministry of Science and Technology of China (grant no. 2018YFA0305700), the National Natural Science Foundation (grant no. 11674369) and the Science Challenge Project (no. TZ2016004). Y.-M.L. acknowledges the NSF under award number DMR-1653769.

Author information

Authors and Affiliations

Authors

Contributions

C.F., Y.M.L. and X.D. developed the theory and designed the research. C.M.Y. carried out the numerical calculations for the hinge states. Y.F.X. and H.M.W. did the calculations for the effective exchange field. Z.D.S. did the symmetry analyses for the numerical results. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Xi Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Minoru Kawamura, Titus Neupert and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Appendices and Supplementary Figures 1–4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, C., Xu, Y., Song, Z. et al. Symmetry-enforced chiral hinge states and surface quantum anomalous Hall effect in the magnetic axion insulator Bi2–xSmxSe3. Nat. Phys. 15, 577–581 (2019). https://doi.org/10.1038/s41567-019-0457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0457-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing