Degenerate Bose gases near a d-wave shape resonance


Understanding quantum many-body systems with strong interactions and unconventional phases therein is one of the most challenging tasks in physics. In cold atom physics, this has been a focused research topic for nearly two decades, where strong interactions are naturally created and well manipulated by bringing the system close to a scattering resonance. However, most of the studies thus far have been limited to the s-wave resonance. Here, we report the experimental observation of a tunable and broad d-wave shape resonance in a quantum degenerate 41K gas, hallmarked by the fact that the molecular binding energies are split into three branches. The measured lifetime in the resonance regime is found to be much longer than the characteristic timescale for many-body relaxations. The analysis of the breathing mode, excited by ramping through the resonance, suggests that a low-temperature atom–molecule mixture is produced. Our system offers great promise for studying a d-wave molecular superfluid.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Inelastic loss spectroscopy of 41K atoms in the vicinity of the d-wave shape resonance.
Fig. 2: Binding energy measurement of d-wave molecules.
Fig. 3: Lifetime of 41K atoms in the vicinity of the shape resonance.
Fig. 4: Collective oscillations of the radial radius of the BEC after magnetic field ramping across the shape resonance.
Fig. 5: Normalized remaining final number Nf and relative oscillation amplitude δexp as a function of ramp speed v.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics, Vol. 9., Statistical Physics, Part 2 (Pergamon Press, Oxford, 1980).

  2. 2.

    Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    ADS  Article  Google Scholar 

  5. 5.

    Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Navon, N., Nascimbène, S., Chevy, F. & Salomon, C. The equation of state of a low-temperature Fermi gas with tunable interactions. Science 328, 729–732 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Cao, C. et al. Universal quantum viscosity in a unitary Fermi gas. Science 331, 58–61 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    Horikoshi, M., Nakajima, S., Ueda, M. & Mukaiyama, T. Measurement of universal thermodynamic functions for a unitary Fermi gas. Science 327, 442–445 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Ku, M. J. H., Sommer, A. T., Cheuk, L. W. & Zwierlein, M. W. Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science 335, 563–567 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Stadler, D., Krinner, S., Meineke, J., Brantut, J.-P. & Esslinger, T. Observing the drop of resistance in the flow of a superfluid Fermi gas. Nature 491, 736–739 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Sidorenkov, L. A. et al. Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Nature 498, 78–81 (2013).

    ADS  Article  Google Scholar 

  12. 12.

    Makotyn, P., Klauss, C. E., Goldberger, D. L., Cornell, E. A. & Jin, D. S. Universal dynamics of a degenerate unitary Bose gas. Nat. Phys. 10, 116–119 (2014).

    Article  Google Scholar 

  13. 13.

    Bardon, A. B. et al. Transverse demagnetization dynamics of a unitary Fermi gas. Science 344, 722–724 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Deng, S. et al. Observation of the Efimovian expansion in scale-invariant Fermi gases. Science 353, 371–374 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Fletcher, R. J. et al. Two- and three-body contacts in the unitary Bose gas. Science 355, 377–380 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Zhang, J. et al. P-wave Feshbach resonances of ultracold 6Li. Phys. Rev. A 70, 030702 (2004).

    ADS  Article  Google Scholar 

  17. 17.

    Gaebler, J. P., Stewart, J. T., Bohn, J. L. & Jin, D. S. p-Wave Feshbach molecules. Phys. Rev. Lett. 98, 200403 (2007).

    ADS  Article  Google Scholar 

  18. 18.

    Luciuk, C. et al. Evidence for universal relations describing a gas with p-wave interactions. Nat. Phys. 12, 599–605 (2016).

    Article  Google Scholar 

  19. 19.

    Volz, T. et al. Feshbach spectroscopy of a shape resonance. Phys. Rev. A 72, 010704 (2005).

    ADS  Article  Google Scholar 

  20. 20.

    Covey, J. P. et al. Doublon dynamics and polar molecule production in an optical lattice. Nat. Commun. 7, 11279 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Cui, Y. et al. Observation of broad d-wave Feshbach resonances with a triplet structure. Phys. Rev. Lett. 119, 203402 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Gao, B., Tiesinga, E., Williams, C. J. & Julienne, P. S. Multichannel quantum-defect theory for slow atomic collisions. Phys. Rev. A 72, 042719 (2005).

    ADS  Article  Google Scholar 

  23. 23.

    Gao, B. Analytic description of atomic interaction at ultracold temperatures: the case of a single channel. Phys. Rev. A 80, 012702 (2009).

    ADS  Article  Google Scholar 

  24. 24.

    Gao, B. Analytic description of atomic interaction at ultracold temperatures. II. Scattering around a magnetic Feshbach resonance. Phys. Rev. A 84, 022706 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Yao, X.-C. et al. Observation of coupled vortex lattices in a mass-imbalance Bose and Fermi superfluid mixture. Phys. Rev. Lett. 117, 145301 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Chen, H.-Z. et al. Production of large 41K Bose–Einstein condensates using D1 gray molasses. Phys. Rev. A 94, 033408 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Wu, Y.-P. et al. A quantum degenerate Bose–Fermi mixture of 41K and 6Li. J. Phys. B 50, 094001 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Wang, J., D’Incao, J. P., Wang, Y. & Greene, C. H. Universal three-body recombination via resonant d-wave interactions. Phys. Rev. A 86, 062511 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    Reinaudi, G., Lahaye, T., Wang, Z. & Guéry-Odelin, D. Strong saturation absorption imaging of dense clouds of ultracold atoms. Opt. Lett. 32, 3143 (2007).

    ADS  Article  Google Scholar 

  30. 30.

    Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Tuning p-wave interactions in an ultracold Fermi gas of atoms. Phys. Rev. Lett. 90, 053201 (2003).

    ADS  Article  Google Scholar 

  31. 31.

    Thompson, S. T., Hodby, E. & Wieman, C. E. Ultracold molecule production via a resonant oscillating magnetic field. Phys. Rev. Lett. 95, 190404 (2005).

    ADS  Article  Google Scholar 

  32. 32.

    Falke, S. et al. Potassium ground-state scattering parameters and Born–Oppenheimer potentials from molecular spectroscopy. Phys. Rev. A 78, 012503 (2008).

    ADS  Article  Google Scholar 

  33. 33.

    Zaccanti, M. et al. Observation of an Efimov spectrum in an atomic system. Nat. Phys. 5, 586–591 (2009).

    Article  Google Scholar 

  34. 34.

    Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301, 1510–1513 (2003).

    ADS  Article  Google Scholar 

  35. 35.

    Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Creation of ultracold molecules from a Fermi gas of atoms. Nature 424, 47–50 (2003).

    ADS  Article  Google Scholar 

  36. 36.

    Pérez-Garca, V. M., Michinel, H., Cirac, J. I., Lewenstein, M. & Zoller, P. Low energy excitations of a Bose–Einstein condensate: a time-dependent variational analysis. Phys. Rev. Lett. 77, 5320–5323 (1996).

    ADS  Article  Google Scholar 

  37. 37.

    Stringari, S. Collective excitations of a trapped Bose-condensed gas. Phys. Rev. Lett. 77, 2360–2363 (1996).

    ADS  Article  Google Scholar 

  38. 38.

    Yao, J., Zhang, P., Qi, R. & Zhai, H. Three-body problem of bosons near a d-wave resonance. Phys. Rev. A 99, 012701 (2019).

    ADS  Article  Google Scholar 

  39. 39.

    Zhang, P., Zhang, S. & Yu, Z. Effective theory and universal relations for Fermi gases near a d-wave interaction resonance. Phys. Rev. A 95, 043609 (2017).

    ADS  Article  Google Scholar 

Download references


We thank C. Chin, B. Gao and Y. Deng for discussions. This work has been supported by the National Key R&D Program of China (grants nos. 2018YFA0306501, 2018YFA0306502 and 2016YFA0301600), NSFC of China (grants nos. 11874340, 11774426, 11434011, 11674393, 11734010 and 11425417), the CAS, the Anhui Initiative in Quantum Information Technologies, the Fundamental Research Funds for the Central Universities (grant no. WK2340000081) and the Research Funds of Renmin University of China (grants nos. 16XNLQ03 and 17XNH054).

Author information




X.-C.Y., Y.-A.C. and J.-W.P. conceived the research. X.-C.Y., X.-P.L., X.-Q.W.,Y.-X.W., Y.-P.W. and H.-Z.C. performed the experiment. R.Q., P.Z. and H.Z. contributed the theory part of this work. All authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Hui Zhai or Yu-Ao Chen or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–2 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, XC., Qi, R., Liu, XP. et al. Degenerate Bose gases near a d-wave shape resonance. Nat. Phys. 15, 570–576 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing