Chiral exchange drag and chirality oscillations in synthetic antiferromagnets


Long-range interactions between quasiparticles give rise to a ‘drag’ that affects the fundamental properties of many systems in condensed matter physics1,2,3,4,5,6,7,8,9,10,11. Drag typically involves the exchange of linear momentum between quasiparticles and strongly influences their transport properties. Here, we describe a kind of drag that involves the exchange of angular momentum between two current-driven magnetic domain walls. The motions of the domain walls are correlated and determined by the strength of the drag. When the drag is below a threshold value, the domain walls move together at a constant intermediate velocity with a steady leakage of angular momentum from the faster to the slower wall. However, we find that when the drag exceeds a threshold value, a different dynamic can take place in which the faster domain wall’s magnetization oscillates synchronously with a precessional motion of the slower domain wall’s magnetization, and angular momentum is continuously transferred between them. Our findings demonstrate a method for delivering spin angular momentum remotely to magnetic entities that otherwise could not be manipulated directly by current, for example, by coupling domain walls or other non-collinear spin textures in metallic and insulating media.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Magnetic properties of SAF films and current-driven domain motion in SAF wires.
Fig. 2: Micromagnetic simulations of chiral exchange drag dynamics in SAF wire.
Fig. 3: Analytical model simulations of chiral exchange drag dynamics in a SAF wire.
Fig. 4: CED dynamics as a function of J, \({{H}}_{{L}}^{{{DM}}}\), Jex and \(\frac{{{{M}}_{{R}}}}{{{{M}}_{{S}}}}\).

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Narozhny, B. N. & Levchenko, A. Coulomb drag. Rev. Mod. Phys. 88, 025003 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 8, 896–901 (2012).

    Article  Google Scholar 

  3. 3.

    Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    ADS  Article  Google Scholar 

  4. 4.

    Huang, X., Bazàn, G. & Bernstein, G. H. Observation of supercurrent drag between normal metal and superconducting films. Phys. Rev. Lett. 74, 4051–4054 (1995).

    ADS  Article  Google Scholar 

  5. 5.

    Pustilnik, M., Mishchenko, E. G. & Starykh, O. A. Generation of spin current by Coulomb drag. Phys. Rev. Lett. 97, 246803 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    Price, A. S., Savchenko, A. K., Narozhny, B. N., Allison, G. & Ritchie, D. A. Giant fluctuations of Coulomb drag in a bilayer system. Science 316, 99–102 (2007).

    ADS  Article  Google Scholar 

  7. 7.

    Huebener, R. P. Effect of phonon drag on the electrical resistivity of metals. Phys. Rev. 146, 502–505 (1966).

    ADS  Article  Google Scholar 

  8. 8.

    Wu, M. W., Horing, N. J. M. & Cui, H. L. Phonon-drag effects on thermoelectric power. Phys. Rev. B 54, 5438–5443 (1996).

    ADS  Article  Google Scholar 

  9. 9.

    Gurevich, Y. G. & Mashkevich, O. L. The electron-phonon drag and transport phenomena in semiconductors. Phys. Rep. 181, 327–394 (1989).

    ADS  Article  Google Scholar 

  10. 10.

    Costache, M. V., Bridoux, G., Neumann, I. & Valenzuela, S. O. Magnon-drag thermopile. Nat. Mater. 11, 199–202 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Liu, T., Vignale, G. & Flatté, M. E. Nonlocal drag of magnons in a ferromagnetic bilayer. Phys. Rev. Lett. 116, 237202 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Dzyaloshinskii, I. E. Thermodynamic theory of weak ferromagnetism in 350 antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957).

    Google Scholar 

  13. 13.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    ADS  Article  Google Scholar 

  14. 14.

    Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Gramila, T. J., Eisenstein, J. P., MacDonald, A. H., Pfeiffer, L. N. & West, K. W. Mutual friction between parallel two-dimensional electron systems. Phys. Rev. Lett. 66, 1216–1219 (1991).

    ADS  Article  Google Scholar 

  22. 22.

    Sivan, U., Solomon, P. M. & Shtrikman, H. Coupled electron-hole transport. Phys. Rev. Lett. 68, 1196–1199 (1992).

    ADS  Article  Google Scholar 

  23. 23.

    Thiaville, A. & Nakatani, Y. in Nanomagnetism and Spintronics (ed. Shinjo, T.) 231–276 (Elsevier Science, 2009).

  24. 24.

    LLG Micromagnetics Simulator;

  25. 25.

    Ryu, K.-S., Yang, S.-H., Thomas, L. & Parkin, S. S. P. Chiral spin torque arising from proximity-induced magnetization. Nat. Commun. 5, 3910 (2014).

    Article  Google Scholar 

  26. 26.

    Hayashi, M., Kim, J., Yamanouchi, M. & Ohno, H. Quantitative characterization of the spin–orbit torque using harmonic Hall voltage measurements. Phys. Rev. B 89, 144425 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Nguyen, M.-H., Ralph, D. C. & Buhrman, R. A. Spin torque study of the spin Hall conductivity and spin diffusion length in platinum thin films with varying resistivity. Phys. Rev. Lett. 116, 126601 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).

    ADS  Article  Google Scholar 

  29. 29.

    Ghosh, A., Auffret, S., Ebels, U. & Bailey, W. E. Penetration depth of transverse spin current in ultrathin ferromagnets. Phys. Rev. Lett. 109, 127202 (2012).

    ADS  Article  Google Scholar 

  30. 30.

    Satoshi, Y., Yasuo, A., Terunobu, M. & Shigemi, M. Temperature dependences of spin-diffusion lengths of Cu and Ru layers. Jpn. J. Appl. Phys. 45, 3892 (2006).

    Article  Google Scholar 

  31. 31.

    Capua, A. et al. Phase-resolved detection of the spin Hall angle by optical ferromagnetic resonance in perpendicularly magnetized thin films. Phys. Rev. B 95, 064401 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    Alejos, O. et al. Current-driven domain wall dynamics in ferromagnetic layers synthetically exchange-coupled by a spacer: a micromagnetic study. J. Appl. Phys. 123, 013901 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt, Rinehart and Winston, 1976).

Download references


We thank the Army Research Office (contract no. W911NF-13-1-0107) for their partial support of this work.

Author information




S.-H.Y. and S.S.P.P. conceived and designed these studies. S.-H.Y. grew the films and patterned devices. C.G. measured devices, analysed the experimental data and carried out the micromagnetic simulations. S.-H.Y. interpreted the results and developed the model. S.-H.Y. and S.S.P.P. wrote the manuscript. All authors discussed the results and made contributions to the manuscript.

Corresponding authors

Correspondence to See-Hun Yang or Stuart S. P. Parkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional theoretical derivations, Supplementary References 1–4 and Supplementary Figures 1–8.

Supplementary Video 1

Analytical model calculation of time-resolved current-driven DW motion. Hx= 2 kOe.

Supplementary Video 2

Analytical model calculation of time-resolved current-driven DW motion. Hx = −1.05 kOe.

Supplementary Video 3

Analytical model calculation of time-resolved current-driven DW motion. Hx = −1.1 kOe.

Supplementary Video 4

Analytical model calculation of time-resolved current-driven DW motion. Hx = −2 kOe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Garg, C. & Parkin, S.S.P. Chiral exchange drag and chirality oscillations in synthetic antiferromagnets. Nat. Phys. 15, 543–548 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing