Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chiral exchange drag and chirality oscillations in synthetic antiferromagnets

Abstract

Long-range interactions between quasiparticles give rise to a ‘drag’ that affects the fundamental properties of many systems in condensed matter physics1,2,3,4,5,6,7,8,9,10,11. Drag typically involves the exchange of linear momentum between quasiparticles and strongly influences their transport properties. Here, we describe a kind of drag that involves the exchange of angular momentum between two current-driven magnetic domain walls. The motions of the domain walls are correlated and determined by the strength of the drag. When the drag is below a threshold value, the domain walls move together at a constant intermediate velocity with a steady leakage of angular momentum from the faster to the slower wall. However, we find that when the drag exceeds a threshold value, a different dynamic can take place in which the faster domain wall’s magnetization oscillates synchronously with a precessional motion of the slower domain wall’s magnetization, and angular momentum is continuously transferred between them. Our findings demonstrate a method for delivering spin angular momentum remotely to magnetic entities that otherwise could not be manipulated directly by current, for example, by coupling domain walls or other non-collinear spin textures in metallic and insulating media.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Magnetic properties of SAF films and current-driven domain motion in SAF wires.
Fig. 2: Micromagnetic simulations of chiral exchange drag dynamics in SAF wire.
Fig. 3: Analytical model simulations of chiral exchange drag dynamics in a SAF wire.
Fig. 4: CED dynamics as a function of J, \({{H}}_{{L}}^{{{DM}}}\), Jex and \(\frac{{{{M}}_{{R}}}}{{{{M}}_{{S}}}}\).

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Narozhny, B. N. & Levchenko, A. Coulomb drag. Rev. Mod. Phys. 88, 025003 (2016).

    Article  ADS  Google Scholar 

  2. Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 8, 896–901 (2012).

    Article  Google Scholar 

  3. Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    Article  ADS  Google Scholar 

  4. Huang, X., Bazàn, G. & Bernstein, G. H. Observation of supercurrent drag between normal metal and superconducting films. Phys. Rev. Lett. 74, 4051–4054 (1995).

    Article  ADS  Google Scholar 

  5. Pustilnik, M., Mishchenko, E. G. & Starykh, O. A. Generation of spin current by Coulomb drag. Phys. Rev. Lett. 97, 246803 (2006).

    Article  ADS  Google Scholar 

  6. Price, A. S., Savchenko, A. K., Narozhny, B. N., Allison, G. & Ritchie, D. A. Giant fluctuations of Coulomb drag in a bilayer system. Science 316, 99–102 (2007).

    Article  ADS  Google Scholar 

  7. Huebener, R. P. Effect of phonon drag on the electrical resistivity of metals. Phys. Rev. 146, 502–505 (1966).

    Article  ADS  Google Scholar 

  8. Wu, M. W., Horing, N. J. M. & Cui, H. L. Phonon-drag effects on thermoelectric power. Phys. Rev. B 54, 5438–5443 (1996).

    Article  ADS  Google Scholar 

  9. Gurevich, Y. G. & Mashkevich, O. L. The electron-phonon drag and transport phenomena in semiconductors. Phys. Rep. 181, 327–394 (1989).

    Article  ADS  Google Scholar 

  10. Costache, M. V., Bridoux, G., Neumann, I. & Valenzuela, S. O. Magnon-drag thermopile. Nat. Mater. 11, 199–202 (2012).

    Article  ADS  Google Scholar 

  11. Liu, T., Vignale, G. & Flatté, M. E. Nonlocal drag of magnons in a ferromagnetic bilayer. Phys. Rev. Lett. 116, 237202 (2016).

    Article  ADS  Google Scholar 

  12. Dzyaloshinskii, I. E. Thermodynamic theory of weak ferromagnetism in 350 antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957).

    Google Scholar 

  13. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  ADS  Google Scholar 

  14. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    Article  ADS  Google Scholar 

  15. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  ADS  Google Scholar 

  16. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  ADS  Google Scholar 

  17. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  ADS  Google Scholar 

  18. Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Article  ADS  Google Scholar 

  19. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  ADS  Google Scholar 

  20. Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

    Article  ADS  Google Scholar 

  21. Gramila, T. J., Eisenstein, J. P., MacDonald, A. H., Pfeiffer, L. N. & West, K. W. Mutual friction between parallel two-dimensional electron systems. Phys. Rev. Lett. 66, 1216–1219 (1991).

    Article  ADS  Google Scholar 

  22. Sivan, U., Solomon, P. M. & Shtrikman, H. Coupled electron-hole transport. Phys. Rev. Lett. 68, 1196–1199 (1992).

    Article  ADS  Google Scholar 

  23. Thiaville, A. & Nakatani, Y. in Nanomagnetism and Spintronics (ed. Shinjo, T.) 231–276 (Elsevier Science, 2009).

  24. LLG Micromagnetics Simulator; http://llgmicro.home.mindspring.com/.

  25. Ryu, K.-S., Yang, S.-H., Thomas, L. & Parkin, S. S. P. Chiral spin torque arising from proximity-induced magnetization. Nat. Commun. 5, 3910 (2014).

    Article  Google Scholar 

  26. Hayashi, M., Kim, J., Yamanouchi, M. & Ohno, H. Quantitative characterization of the spin–orbit torque using harmonic Hall voltage measurements. Phys. Rev. B 89, 144425 (2014).

    Article  ADS  Google Scholar 

  27. Nguyen, M.-H., Ralph, D. C. & Buhrman, R. A. Spin torque study of the spin Hall conductivity and spin diffusion length in platinum thin films with varying resistivity. Phys. Rev. Lett. 116, 126601 (2016).

    Article  ADS  Google Scholar 

  28. Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).

    Article  ADS  Google Scholar 

  29. Ghosh, A., Auffret, S., Ebels, U. & Bailey, W. E. Penetration depth of transverse spin current in ultrathin ferromagnets. Phys. Rev. Lett. 109, 127202 (2012).

    Article  ADS  Google Scholar 

  30. Satoshi, Y., Yasuo, A., Terunobu, M. & Shigemi, M. Temperature dependences of spin-diffusion lengths of Cu and Ru layers. Jpn. J. Appl. Phys. 45, 3892 (2006).

    Article  Google Scholar 

  31. Capua, A. et al. Phase-resolved detection of the spin Hall angle by optical ferromagnetic resonance in perpendicularly magnetized thin films. Phys. Rev. B 95, 064401 (2017).

    Article  ADS  Google Scholar 

  32. Alejos, O. et al. Current-driven domain wall dynamics in ferromagnetic layers synthetically exchange-coupled by a spacer: a micromagnetic study. J. Appl. Phys. 123, 013901 (2018).

    Article  ADS  Google Scholar 

  33. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt, Rinehart and Winston, 1976).

Download references

Acknowledgements

We thank the Army Research Office (contract no. W911NF-13-1-0107) for their partial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.-H.Y. and S.S.P.P. conceived and designed these studies. S.-H.Y. grew the films and patterned devices. C.G. measured devices, analysed the experimental data and carried out the micromagnetic simulations. S.-H.Y. interpreted the results and developed the model. S.-H.Y. and S.S.P.P. wrote the manuscript. All authors discussed the results and made contributions to the manuscript.

Corresponding authors

Correspondence to See-Hun Yang or Stuart S. P. Parkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional theoretical derivations, Supplementary References 1–4 and Supplementary Figures 1–8.

Supplementary Video 1

Analytical model calculation of time-resolved current-driven DW motion. Hx= 2 kOe.

Supplementary Video 2

Analytical model calculation of time-resolved current-driven DW motion. Hx = −1.05 kOe.

Supplementary Video 3

Analytical model calculation of time-resolved current-driven DW motion. Hx = −1.1 kOe.

Supplementary Video 4

Analytical model calculation of time-resolved current-driven DW motion. Hx = −2 kOe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Garg, C. & Parkin, S.S.P. Chiral exchange drag and chirality oscillations in synthetic antiferromagnets. Nat. Phys. 15, 543–548 (2019). https://doi.org/10.1038/s41567-019-0438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0438-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing