Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum hardware simulating four-dimensional inelastic neutron scattering

Abstract

Magnetic molecules, modelled as finite-size spin systems, are test-beds for quantum phenomena1 and could constitute key elements in future spintronics devices2,3,4,5, long-lasting nanoscale memories6 or noise-resilient quantum computing platforms7,8,9,10. Inelastic neutron scattering is the technique of choice to probe them, characterizing molecular eigenstates on atomic scales11,12,13,14. However, although large magnetic molecules can be controllably synthesized15,16,17,18, simulating their dynamics and interpreting spectroscopic measurements is challenging because of the exponential scaling of the required resources on a classical computer. Here, we show that quantum computers19,20,21,22 have the potential to efficiently extract dynamical correlations and the associated magnetic neutron cross-section by simulating prototypical spin systems on a quantum hardware22. We identify the main gate errors and show the potential scalability of our approach. The synergy between developments in neutron scattering and quantum processors will help design spin clusters for future applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Correlation functions and INS cross-section for spin dimers.
Fig. 2: Dynamical correlation functions and INS spectrum of spin trimers.
Fig. 3: Error analysis.
Fig. 4: Scalability of the approach.

Code availability

The custom Python scripts for the quantum har-dware and original codes are available from the corresponding author upon reasonable request.

Data availability

The data that support the plots and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Gaudenzi, R., Burzurí, E., Maegawa, S., van der Zandt, S. J. & Luis, F. Quantum Landauer erasure with a molecular nanomagnet. Nat. Phys. 14, 565–568 (2018).

    Article  Google Scholar 

  2. 2.

    Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Ganzhorn, M., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotechnol. 8, 165–169 (2013).

    ADS  Article  Google Scholar 

  4. 4.

    Misiorny, M., Hell, M. & Wegewijs, M. R. Spintronic magnetic anisotropy. Nat. Phys. 9, 801–805 (2013).

    Article  Google Scholar 

  5. 5.

    Cervetti, C. et al. The classical and quantum dynamics of molecular spins on graphene. Nat. Mater. 15, 164–168 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Goodwin, C. A. P., Ortu, F., Reta, D., Chilton, N. F. & Mills, D. P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548, 439–442 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Ferrando-Soria, J. et al. A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 7, 11377 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Hussain, R. et al. Coherent manipulation of a molecular Ln-based nuclear qudit coupled to an electron qubit. J. Am. Chem. Soc. 140, 9814–9818 (2018).

    Article  Google Scholar 

  11. 11.

    Baker, M. L. et al. Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering. Nat. Phys. 8, 906–911 (2012).

    Article  Google Scholar 

  12. 12.

    Chiesa, A. et al. Magnetic exchange interactions in the molecular nanomagnet Mn12. Phys. Rev. Lett. 119, 217202 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Garlatti, E. et al. Anisotropy of CoII transferred to the Cr7Co polymetallic cluster via strong exchange interactions. Chem. Sci. 9, 3555–3562 (2018).

    Article  Google Scholar 

  14. 14.

    Garlatti, E. et al. Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering. Nat. Commun. 8, 14543 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Whitehead, G. F. S. et al. A ring of rings and other multicomponent assemblies of cages. Angew. Chem. Int. Ed. 52, 9932–9935 (2013).

    Article  Google Scholar 

  16. 16.

    Schröder, C. et al. Competing spin phases in geometrically frustrated magnetic molecules. Phys. Rev. Lett. 94, 017205 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    Todea, A. M. et al. Extending the (Mo)Mo512M30 capsule keplerate sequence: a Cr30 cluster of S = 3/2 metal centers with a Na(H2O)12 encapsulate. Angew. Chem. Int. Ed. 46, 6106–6110 (2007).

    Article  Google Scholar 

  18. 18.

    Baniodeh, A. et al. High spin cycles: topping the spin record for a single molecule verging on quantum criticality. npj Quantum Mater. 3, 10 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Corcoles, A. D. et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015).

    Article  Google Scholar 

  21. 21.

    Gambetta, J. M., Chow, J. M. & Steffen, M. Building logical qubits in a superconducting quantum computing system. npj Quantum Inf. 3, 2 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Lovesey, S. W. Theory of Neutron Scattering from Condensed Matter (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  24. 24.

    Georgescu, I. M., Ashab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    ADS  Article  Google Scholar 

  26. 26.

    Gambetta, J. M. et al. Characterization of addressability by simultaneous randomized benchmarking. Phys. Rev. Lett. 109, 240504 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    Somma, R., Ortiz, G., Gubernatis, J. E., Knill, E. & Laflamme, R. Simulating physical phenomena by quantum networks. Phys. Rev. A 65, 042323 (2002).

    ADS  Article  Google Scholar 

  28. 28.

    McKay, D. C., Wood, C. J., Sheldon, S., Chow, J. M. & Gambetta, J. M. Efficient Z gates for quantum computing. Phys. Rev. A 96, 022330 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Vidal, G. & Dawson, C. M. Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A 69, 010301(R) (2004).

    ADS  Article  Google Scholar 

  30. 30.

    Eaton, S. S., Eaton, G. R. & Chang, C. K. Synthesis and geometry determination of cofacial diporphyrins. EPR spectroscopy of dicopper diporphyrins in frozen solution. J. Am. Chem. Soc. 107, 3177–3184 (1985).

    Article  Google Scholar 

  31. 31.

    Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    ADS  Article  Google Scholar 

  32. 32.

    Sheldon, S., Magesan, E., Chow, J. M. & Gambetta, J. M. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A 93, 060302(R) (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Chiesa, A. et al. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits. Sci. Rep. 5, 16036 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the Italian Ministry of Education and Research (MIUR) through PRIN Project 2015 HYFSRT, ‘Quantum Coherence in Nanostructures of Molecular Spin Qubits’. The authors also acknowledge useful discussions with G. Amoretti and G. Prando.

Author information

Affiliations

Authors

Contributions

A.C., F.T. and M.G. used the IBM chips to implement gate sequences. Analysis of the experimental results was carried out by A.C., F.T., D.G., I.T. and S.C. Numerical calculations were performed by A.C. and F.T. P.S., I.T., D.G. and S.C. conceived the work and discussed the results with other co-authors. A.C. and S.C. wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to S. Carretta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal Peer Review Information: Nature Physics thanks Emilio Lorenzo, David Tennant and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–27, Supplementary Tables 1–6 and Supplementary References 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chiesa, A., Tacchino, F., Grossi, M. et al. Quantum hardware simulating four-dimensional inelastic neutron scattering. Nat. Phys. 15, 455–459 (2019). https://doi.org/10.1038/s41567-019-0437-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing