Article | Published:

Turning a molecule into a coherent two-level quantum system


The use of molecules in quantum optical applications has been hampered by incoherent internal vibrations and other phononic interactions with their environment. Here we show that an organic molecule placed into an optical microcavity behaves as a coherent two-level quantum system. This allows the observation of 99% extinction of a laser beam by a single molecule, saturation with less than 0.5 photons and non-classical generation of few-photons super-bunched light. Furthermore, we demonstrate efficient interaction of the molecule–microcavity system with single photons generated by a second molecule in a distant laboratory. Our achievements represent an important step towards linear and nonlinear quantum photonic circuits based on organic platforms.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Spaun, B. et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016).

  2. 2.

    Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys 13, 1173–1176 (2017).

  3. 3.

    Lidzey, D. G., Bradley, D. D. C., Armitage, A., Walker, S. & Skolnick, M. S. Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities. Science 288, 1620–1623 (2000).

  4. 4.

    Hakala, T. K. et al. Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. Phys. Rev. Lett. 103, 053602 (2009).

  5. 5.

    Schwartz, T., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Reversible switching of ultrastrong light–molecule coupling. Phys. Rev. Lett. 106, 196405 (2011).

  6. 6.

    Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

  7. 7.

    Polisseni, C. et al. Stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices. Opt. Express 24, 5615–5627 (2016).

  8. 8.

    Zhang, Y. et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun. 8, 15225 (2017).

  9. 9.

    Skoff, S. M., Papencordt, D., Schauffert, H., Bayer, B. C. & Rauschenbeutel, A. Optical-nanofiber-based interface for single molecules. Phys. Rev. A 97, 043839 (2018).

  10. 10.

    Liu, L. R. et al. Building one molecule from a reservoir of two atoms. Science 360, 900–903 (2018).

  11. 11.

    Moerner, W., Orrit, M., Wild, U. & Basché, T. (eds) Single-Molecule Optical Detection, Imaging and Spectroscopy (Wiley, New York, 1996).

  12. 12.

    Pototschnig, M. et al. Controlling the phase of a light beam with a single molecule. Phys. Rev. Lett. 107, 063001 (2011).

  13. 13.

    Maser, A., Gmeiner, B., Utikal, T., Götzinger, S. & Sandoghdar, V. Few-photon coherent nonlinear optics with a single molecule. Nat. Photon. 10, 450–453 (2016).

  14. 14.

    Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

  15. 15.

    Berman, P. R. (ed.) Cavity Quantum Electrodynamics (Academic Press, San Diego, 1994).

  16. 16.

    Norris, D. J., Kuwata-Gonokami, M. & Moerner, W. E. Excitation of a single molecule on the surface of a spherical microcavity. Appl. Phys. Lett. 71, 297–299 (1997).

  17. 17.

    Steiner, M., Hartschuh, A., Korlacki, R. & Meixner, A. J. Highly efficient, tunable single photon source based on single molecules. Appl. Phys. Lett. 90, 183122 (2007).

  18. 18.

    Chizhik, A. et al. Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity. Phys. Rev. Lett. 102, 073002 (2009).

  19. 19.

    Wang, D. et al. Coherent coupling of a single molecule to a scanning Fabry–Perot microcavity. Phys. Rev. X 7, 021014 (2017).

  20. 20.

    Toninelli, C. et al. A scanning microcavity for in situ control of single-molecule emission. Appl. Phys. Lett. 97, 021107 (2010).

  21. 21.

    Kelkar, H. et al. Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ 3 volume. Phys. Rev. Appl. 4, 054010 (2015).

  22. 22.

    Nicolet, A. A. L., Hofmann, C., Kol’chenko, M. A., Kozankiewicz, B. & Orrit, M. Single dibenzoterrylene molecules in an anthracene crystal: spectroscopy and photophysics. ChemPhysChem 8, 1215–1220 (2007).

  23. 23.

    Trebbia, J.-B., Ruf, H., Tamarat, P. & Lounis, B. Efficient generation of near infra-red single photons from the zero-phonon line of a single molecule. Opt. Express 17, 23986–23991 (2009).

  24. 24.

    Petermann, K. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron. 15, 566–570 (1979).

  25. 25.

    Auffèves-Garnier, A., Simon, C., G‚rard, J. M. & Poizat, J. P. Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A 75, 053823 (2007).

  26. 26.

    Heinzen, D. J. & Feld, M. S. Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator. Phys. Rev. Lett. 59, 2623–2626 (1987).

  27. 27.

    Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions (Wiley, Weinheim, 2004).

  28. 28.

    Choi, Y. et al. Quasieigenstate coalescence in an atom–cavity quantum composite. Phys. Rev. Lett. 104, 153601 (2010).

  29. 29.

    Rice, P. R. & Carmichael, H. J. Single-atom cavity-enhanced absorption. I: Photon statistics in the bad-cavity limit. IEEE J. Quantum Electron. 24, 1351–1366 (1988).

  30. 30.

    Ourjoumtsev, A. et al. Observation of squeezed light from one atom excited with two photons. Nature 474, 623–626 (2011).

  31. 31.

    Schulte, C. H. H. et al. Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015).

  32. 32.

    Ficek, Z. & Swain, S. Quantum Interference and Coherence: Theory and Experiments (Springer Science + Business Media, Berlin, 2005).

  33. 33.

    Carmichael, H. J. & Rice, P. R. Quantum interference and collapse of the wavefunction in cavity QED. Opt. Commun. 82, 73–79 (1991).

  34. 34.

    Bennett, A. J. et al. A semiconductor photon-sorter. Nat. Nanotechnol. 11, 857–860 (2016).

  35. 35.

    Snijders, H. et al. Purification of a single-photon nonlinearity. Nat. Commun. 7, 12578 (2016).

  36. 36.

    Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2008).

  37. 37.

    Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).

  38. 38.

    Rezus, Y. L. A. et al. Single-photon spectroscopy of a single molecule. Phys. Rev. Lett. 108, 093601 (2012).

  39. 39.

    Kok, P. & Lovett, B. Introduction to Optical Quantum Information Processing (Cambridge Univ. Press, Cambridge, 2010).

  40. 40.

    Ralph, T., Söllner, I., Mahmoodian, S., White, A. & Lodahl, P. Photon sorting, efficient Bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity. Phys. Rev. Lett. 114, 173603 (2015).

  41. 41.

    Rotenberg, N. et al. Small slot waveguide rings for on-chip quantum optical circuits. Opt. Express 25, 5397–5414 (2017).

  42. 42.

    Türschmann, P. et al. Chip-based all-optical control of single molecules coherently coupled to a nanoguide. Nano Lett. 17, 4941–4945 (2017).

  43. 43.

    Diniz, I. et al. Strongly coupling a cavity to inhomogeneous ensembles of emitters: potential for long-lived solid-state quantum memories. Phys. Rev. A 84, 063810 (2011).

  44. 44.

    Haakh, H. R., Faez, S. & Sandoghdar, V. Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide. Phys. Rev. A 94, 053840 (2016).

  45. 45.

    Walser, A., Zumofen, G., Renn, A., Götzinger, S. & Sandoghdar, V. Spectral dynamics and spatial localization of single molecules in a polymer. Mol. Phys. 107, 1897–1909 (2009).

  46. 46.

    Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

  47. 47.

    Trichet, A. A. P., Dolan, P. R., Coles, D. M., Hughes, G. M. & Smith, J. M. Topographic control of open-access microcavities at the nanometer scale. Opt. Express 23, 17205–17216 (2015).

  48. 48.

    Hänsch, T. W. & Couillaud, B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980).

Download references


The authors thank J. Renger, A. Dutschke and E. Butzen for the fabrication of micromirrors, M. Schwab for the construction of the mechanical components for the cryostats, and L. Meier for help with electronics to lock the cavity. This work was supported by the Max Planck Society.

Author information

D.W. and H.K. performed the cavity experiments and analysed the data. D.R. and A.S. were responsible for the generation of single photons. T.U., S.G. and V.S. supervised the experiments. D.M.-C. contributed to theoretical analysis of the system. The manuscript was written by V.S. and all authors commented on it.

Correspondence to Vahid Sandoghdar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Girish Agarwal, Barak Dayan and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and methods

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Schematics of the experimental arrangements.
Fig. 2: Resonant response of the molecule–microcavity composite to a laser beam.
Fig. 3: Frequency-detuned response of the molecule–cavity system.
Fig. 4: Large phase shift of a laser beam by a single molecule.
Fig. 5: Strong modification of photon statistics.
Fig. 6: Reflection of single photons.