Ferromagnetism and superconductivity are most fundamental phenomena in condensed-matter physics. Entailing opposite spin orders, they share an important conceptual similarity: disturbances in magnetic ordering in magnetic materials can propagate in the form of spin waves (magnons) while magnetic fields penetrate superconductors as a lattice of magnetic flux quanta (fluxons). Despite a rich choice of wave and quantum phenomena predicted, magnon–fluxon coupling has not been observed experimentally so far. Here, we clearly evidence the interaction of spin waves with a flux lattice in ferromagnet/superconductor Py/Nb bilayers. We demonstrate that, in this system, the magnon frequency spectrum exhibits a Bloch-like band structure that can be tuned by the biasing magnetic field. Furthermore, we observe Doppler shifts in the frequency spectra of spin waves scattered on a flux lattice moving under the action of a transport current in the superconductor.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Journal peer review information: Nature Physics thanks Jason Robinson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Rogalla, H. & Kes, P. H. (eds) 100 Years of Superconductivity (CRC Press, Boca Raton, 2011).

  2. 2.

    Shubnikov, L. V., Khotkevich, V. I., Shepelev, Y. D. & Ryabinin, Y. N. Magnetic properties of superconductors and alloys. Zh. Eksper. Teor. Fiz. 7, 221–237 (1937).

  3. 3.

    Shubnikov, L. V., Khotkevich, V. I., Shepelev, Y. D. & Ryabinin, Y. N. Magnetic properties of superconducting metals and alloys. Ukr. J. Phys. 53, 42–52 (2008).

  4. 4.

    Abrikosov, A. A. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174–1182 (1957).

  5. 5.

    Abrikosov, A. A. Nobel lecture: Type II superconductors and the vortex lattice. Rev. Mod. Phys. 76, 975–979 (2004).

  6. 6.

    Brandt, E. H. The flux-line lattice in superconductors. Rep. Progr. Phys. 58, 1465–1594 (1995).

  7. 7.

    Moshchalkov, V. V., Wördenweber, R. & Lang, M. (eds) Nanoscience and Engineering in Superconductivity (Springer, Berlin, 2010).

  8. 8.

    Dobrovolskiy, O. V. Abrikosov fluxonics in washboard nanolandscapes. Physica C 533, 80–90 (2017).

  9. 9.

    Bloch, F. Zur Theorie des Ferromagnetismus. Z. Phys. 61, 206–219 (1930).

  10. 10.

    Gurevich, A. & Melkov, G. Magnetization Oscillations and Waves (CRC Press, New York, 1996).

  11. 11.

    Schneider, M. et al. Bose–Einstein condensation of quasi-particles by rapid cooling. Preprint at https://arxiv.org/abs/1612.07305 (2016).

  12. 12.

    Bozhko, D. A. et al. Supercurrent in a room-temperature Bose–Einstein magnon condensate. Nat. Phys. 12, 1057–1062 (2016).

  13. 13.

    Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

  14. 14.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

  15. 15.

    Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

  16. 16.

    Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

  17. 17.

    Grünberg, P. A. Light scattering from magnetic surface excitations. Progr. Surf. Sci. 18, 1–58 (1985).

  18. 18.

    Hillebrands, B. Spin-wave calculations for multilayered structures. Phys. Rev. B 41, 530–540 (1990).

  19. 19.

    Di, K. et al. Asymmetric spin-wave dispersion due to Dzyaloshinskii–Moriya interaction in an ultrathin Pt/CoFeB film. Appl. Phys. Lett. 106, 052403 (2015).

  20. 20.

    Barnes, S. E., Cohn, J. L. & Zuo, F. The possibility of flux flow spectroscopy. Phys. Rev. Lett. 77, 3252–3255 (1996).

  21. 21.

    Ng, T. K. & Varma, C. M. Spin and vortex dynamics and electromagnetic propagation in the spontaneous vortex phase. Phys. Rev. B 58, 11624–11630 (1998).

  22. 22.

    Bulaevskii, L. N., Hruška, M. & Maley, M. P. Spectroscopy of magnetic excitations in magnetic superconductors using vortex motion. Phys. Rev. Lett. 95, 207002 (2005).

  23. 23.

    Lin, S.-Z. & Bulaevskii, L. N. Measuring spectrum of spin wave using vortex dynamics. Phys. Rev. B 85, 134508 (2012).

  24. 24.

    Shekhter, A., Bulaevskii, L. N. & Batista, C. D. Vortex viscosity in magnetic superconductors due to radiation of spin waves. Phys. Rev. Lett. 106, 037001 (2011).

  25. 25.

    Bespalov, A. A. & Buzdin, A. I. Band structure of magnetic excitations in the vortex phase of a ferromagnetic superconductor. Phys. Rev. B 87, 094509 (2013).

  26. 26.

    Bespalov, A. A., Mel'nikov, A. S. & Buzdin, A. I. Magnon radiation by moving Abrikosov vortices in ferromagnetic superconductors and superconductor-ferromagnet multilayers. Phys. Rev. B 89, 054516 (2014).

  27. 27.

    Jeon, K.-R. et al. Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents. Nat. Mater. 17, 499–503 (2018).

  28. 28.

    Iavarone, M. et al. Imaging the spontaneous formation of vortex–antivortex pairs in planar superconductor/ferromagnet hybrid structures. Phys. Rev. B 84, 024506 (2011).

  29. 29.

    Golovchanskiy, I. A. et al. Ferromagnet/superconductor hybridization for magnonic applications. Adv. Func. Mater. 28, 1802375 (2018).

  30. 30.

    Krawczyk, M. & Grundler, D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26, 123202 (2014).

  31. 31.

    Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnonic crystals for data processing. J. Phys. D 50, 244001 (2017).

  32. 32.

    Vlasko-Vlasov, V. K. et al. Crossing fields in thin films of isotropic superconductors. Phys. Rev. B 94, 184502 (2016).

  33. 33.

    Gubin, A. I., Il'in, K. S., Vitusevich, S. A., Siegel, M. & Klein, N. Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films. Phys. Rev. B 72, 064503 (2005).

  34. 34.

    Kim, D. H., Kim, K. T., Hong, H. G., Hwang, J. S. & Hahn, T. S. Temperature dependence of Nb penetration depth measured by a resistive method. Cryogenics 43, 561–565 (2003).

  35. 35.

    Dobrovolskiy, O. V. & Huth, M. Crossover from dirty to clean superconducting limit in dc magnetron-sputtered thin Nb films. Thin Solid Films 520, 5985–5990 (2012).

  36. 36.

    Lu, M., Feng, L. & Chen, Y. Phononic crystals and acoustic metamaterials. Mater. Today 12, 34–42 (2009).

  37. 37.

    Yablonovitch, E. Photonic crystals. J. Mod. Opt. 41, 173–194 (1994).

  38. 38.

    Chumak, A. V., Dhagat, P., Jander, A., Serga, A. A. & Hillebrands, B. Reverse Doppler effect of magnons with negative group velocity scattered from a moving Bragg grating. Phys. Rev. B 81, 140404 (2010).

  39. 39.

    Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C 19, 7013 (1986).

  40. 40.

    Brächer, T., Pirro, P. & Hillebrands, B. Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale. Phys. Rep. 699, 1–34 (2017).

  41. 41.

    Pirro, P. et al. Interference of coherent spin waves in micron-sized ferromagnetic waveguides. Phys. Status Solidi b 248, 2404–2408 (2011).

  42. 42.

    Vlaminck, V. & Bailleul, M. Current-induced spin-wave Doppler shift. Science 322, 410–413 (2008).

  43. 43.

    Koshelev, A. E. & Vinokur, V. M. Dynamic melting of the vortex lattice. Phys. Rev. Lett. 73, 3580–3583 (1994).

  44. 44.

    Dobrovolskiy, O. V., Huth, M., Shklovskij, V. A. & Vovk, R. V. Mobile fluxons as coherent probes of periodic pinning in superconductors. Sci. Rep. 7, 13740 (2017).

Download references


The authors gratefully acknowledge financial support by the DFG in the framework of the Collaborative Research Center SFB/TRR-173 Spin+X (Project B04). O.V.D. acknowledges the DFG for support through grant no. 374052683 (DO1511/3-1). O.V.D., V.V.K., R.V.V. and V.A.S. acknowledge support from the European Commission within the framework of the programme Marie Sklodowska-Curie Actions—Research and Innovation Staff Exchange (MSCA-RISE) under grant agreement no. 644348 (MagIC). A.V.C. and T.B. acknowledge financial support within the ERC Starting Grant no. 678309 MagnonCircuits. Research leading to these results was also conducted within the framework of the COST Action CA16218 (NANOCOHYBRI) of the European Cooperation in Science and Technology.

Author information


  1. Physikalisches Institut, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany

    • O. V. Dobrovolskiy
    • , R. Sachser
    •  & M. Huth
  2. Physics Department, V. Karazin National University, Kharkiv, Ukraine

    • O. V. Dobrovolskiy
    • , R. V. Vovk
    •  & V. A. Shklovskij
  3. Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany

    • T. Brächer
    • , T. Böttcher
    • , B. Hillebrands
    •  & A. V. Chumak
  4. Materials Science in Mainz (MAINZ), Johannes Gutenberg University Mainz, Mainz, Germany

    • T. Böttcher
  5. School of Physics and Astronomy, University of Exeter, Exeter, UK

    • V. V. Kruglyak


  1. Search for O. V. Dobrovolskiy in:

  2. Search for R. Sachser in:

  3. Search for T. Brächer in:

  4. Search for T. Böttcher in:

  5. Search for V. V. Kruglyak in:

  6. Search for R. V. Vovk in:

  7. Search for V. A. Shklovskij in:

  8. Search for M. Huth in:

  9. Search for B. Hillebrands in:

  10. Search for A. V. Chumak in:


O.V.D., A.V.C., V.V.K. and V.A.S. conceived the experiment. O.V.D. and A.V.C. designed the samples. T.Böttcher and R.S. fabricated the samples. O.V.D. and R.V.V. performed the measurements. O.V.D., T.Brächer and A.V.C. performed and evaluated the spin-wave transmission simulations. O.V.D. and A.V.C. led the project. All authors discussed the results and co-wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to O. V. Dobrovolskiy.

About this article

Publication history




Issue Date