Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnon–fluxon interaction in a ferromagnet/superconductor heterostructure


Ferromagnetism and superconductivity are most fundamental phenomena in condensed-matter physics. Entailing opposite spin orders, they share an important conceptual similarity: disturbances in magnetic ordering in magnetic materials can propagate in the form of spin waves (magnons) while magnetic fields penetrate superconductors as a lattice of magnetic flux quanta (fluxons). Despite a rich choice of wave and quantum phenomena predicted, magnon–fluxon coupling has not been observed experimentally so far. Here, we clearly evidence the interaction of spin waves with a flux lattice in ferromagnet/superconductor Py/Nb bilayers. We demonstrate that, in this system, the magnon frequency spectrum exhibits a Bloch-like band structure that can be tuned by the biasing magnetic field. Furthermore, we observe Doppler shifts in the frequency spectra of spin waves scattered on a flux lattice moving under the action of a transport current in the superconductor.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental system.
Fig. 2: Fluxon-induced reconfigurable magnonic crystal.
Fig. 3: Tailoring spin-wave spectra by magnetic field and current.
Fig. 4: Doppler shift at Bragg scattering of magnons on moving fluxons.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. Rogalla, H. & Kes, P. H. (eds) 100 Years of Superconductivity (CRC Press, Boca Raton, 2011).

  2. Shubnikov, L. V., Khotkevich, V. I., Shepelev, Y. D. & Ryabinin, Y. N. Magnetic properties of superconductors and alloys. Zh. Eksper. Teor. Fiz. 7, 221–237 (1937).

    Google Scholar 

  3. Shubnikov, L. V., Khotkevich, V. I., Shepelev, Y. D. & Ryabinin, Y. N. Magnetic properties of superconducting metals and alloys. Ukr. J. Phys. 53, 42–52 (2008).

    Google Scholar 

  4. Abrikosov, A. A. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174–1182 (1957).

    Google Scholar 

  5. Abrikosov, A. A. Nobel lecture: Type II superconductors and the vortex lattice. Rev. Mod. Phys. 76, 975–979 (2004).

  6. Brandt, E. H. The flux-line lattice in superconductors. Rep. Progr. Phys. 58, 1465–1594 (1995).

    Article  ADS  Google Scholar 

  7. Moshchalkov, V. V., Wördenweber, R. & Lang, M. (eds) Nanoscience and Engineering in Superconductivity (Springer, Berlin, 2010).

  8. Dobrovolskiy, O. V. Abrikosov fluxonics in washboard nanolandscapes. Physica C 533, 80–90 (2017).

    Article  ADS  Google Scholar 

  9. Bloch, F. Zur Theorie des Ferromagnetismus. Z. Phys. 61, 206–219 (1930).

    Article  ADS  Google Scholar 

  10. Gurevich, A. & Melkov, G. Magnetization Oscillations and Waves (CRC Press, New York, 1996).

    Google Scholar 

  11. Schneider, M. et al. Bose–Einstein condensation of quasi-particles by rapid cooling. Preprint at (2016).

  12. Bozhko, D. A. et al. Supercurrent in a room-temperature Bose–Einstein magnon condensate. Nat. Phys. 12, 1057–1062 (2016).

    Article  Google Scholar 

  13. Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    Article  ADS  Google Scholar 

  14. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  15. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Article  ADS  Google Scholar 

  16. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  ADS  Google Scholar 

  17. Grünberg, P. A. Light scattering from magnetic surface excitations. Progr. Surf. Sci. 18, 1–58 (1985).

    Article  ADS  Google Scholar 

  18. Hillebrands, B. Spin-wave calculations for multilayered structures. Phys. Rev. B 41, 530–540 (1990).

    Article  ADS  Google Scholar 

  19. Di, K. et al. Asymmetric spin-wave dispersion due to Dzyaloshinskii–Moriya interaction in an ultrathin Pt/CoFeB film. Appl. Phys. Lett. 106, 052403 (2015).

    Article  ADS  Google Scholar 

  20. Barnes, S. E., Cohn, J. L. & Zuo, F. The possibility of flux flow spectroscopy. Phys. Rev. Lett. 77, 3252–3255 (1996).

    Article  ADS  Google Scholar 

  21. Ng, T. K. & Varma, C. M. Spin and vortex dynamics and electromagnetic propagation in the spontaneous vortex phase. Phys. Rev. B 58, 11624–11630 (1998).

    Article  ADS  Google Scholar 

  22. Bulaevskii, L. N., Hruška, M. & Maley, M. P. Spectroscopy of magnetic excitations in magnetic superconductors using vortex motion. Phys. Rev. Lett. 95, 207002 (2005).

    Article  ADS  Google Scholar 

  23. Lin, S.-Z. & Bulaevskii, L. N. Measuring spectrum of spin wave using vortex dynamics. Phys. Rev. B 85, 134508 (2012).

    Article  ADS  Google Scholar 

  24. Shekhter, A., Bulaevskii, L. N. & Batista, C. D. Vortex viscosity in magnetic superconductors due to radiation of spin waves. Phys. Rev. Lett. 106, 037001 (2011).

    Article  ADS  Google Scholar 

  25. Bespalov, A. A. & Buzdin, A. I. Band structure of magnetic excitations in the vortex phase of a ferromagnetic superconductor. Phys. Rev. B 87, 094509 (2013).

    Article  ADS  Google Scholar 

  26. Bespalov, A. A., Mel'nikov, A. S. & Buzdin, A. I. Magnon radiation by moving Abrikosov vortices in ferromagnetic superconductors and superconductor-ferromagnet multilayers. Phys. Rev. B 89, 054516 (2014).

    Article  ADS  Google Scholar 

  27. Jeon, K.-R. et al. Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents. Nat. Mater. 17, 499–503 (2018).

    Article  ADS  Google Scholar 

  28. Iavarone, M. et al. Imaging the spontaneous formation of vortex–antivortex pairs in planar superconductor/ferromagnet hybrid structures. Phys. Rev. B 84, 024506 (2011).

    Article  ADS  Google Scholar 

  29. Golovchanskiy, I. A. et al. Ferromagnet/superconductor hybridization for magnonic applications. Adv. Func. Mater. 28, 1802375 (2018).

  30. Krawczyk, M. & Grundler, D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26, 123202 (2014).

    Article  Google Scholar 

  31. Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnonic crystals for data processing. J. Phys. D 50, 244001 (2017).

    Article  ADS  Google Scholar 

  32. Vlasko-Vlasov, V. K. et al. Crossing fields in thin films of isotropic superconductors. Phys. Rev. B 94, 184502 (2016).

    Article  ADS  Google Scholar 

  33. Gubin, A. I., Il'in, K. S., Vitusevich, S. A., Siegel, M. & Klein, N. Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films. Phys. Rev. B 72, 064503 (2005).

    Article  ADS  Google Scholar 

  34. Kim, D. H., Kim, K. T., Hong, H. G., Hwang, J. S. & Hahn, T. S. Temperature dependence of Nb penetration depth measured by a resistive method. Cryogenics 43, 561–565 (2003).

    Article  ADS  Google Scholar 

  35. Dobrovolskiy, O. V. & Huth, M. Crossover from dirty to clean superconducting limit in dc magnetron-sputtered thin Nb films. Thin Solid Films 520, 5985–5990 (2012).

    Article  ADS  Google Scholar 

  36. Lu, M., Feng, L. & Chen, Y. Phononic crystals and acoustic metamaterials. Mater. Today 12, 34–42 (2009).

    Article  Google Scholar 

  37. Yablonovitch, E. Photonic crystals. J. Mod. Opt. 41, 173–194 (1994).

    Article  ADS  Google Scholar 

  38. Chumak, A. V., Dhagat, P., Jander, A., Serga, A. A. & Hillebrands, B. Reverse Doppler effect of magnons with negative group velocity scattered from a moving Bragg grating. Phys. Rev. B 81, 140404 (2010).

    Article  ADS  Google Scholar 

  39. Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C 19, 7013 (1986).

    Article  ADS  Google Scholar 

  40. Brächer, T., Pirro, P. & Hillebrands, B. Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale. Phys. Rep. 699, 1–34 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  41. Pirro, P. et al. Interference of coherent spin waves in micron-sized ferromagnetic waveguides. Phys. Status Solidi b 248, 2404–2408 (2011).

    Article  ADS  Google Scholar 

  42. Vlaminck, V. & Bailleul, M. Current-induced spin-wave Doppler shift. Science 322, 410–413 (2008).

    Article  ADS  Google Scholar 

  43. Koshelev, A. E. & Vinokur, V. M. Dynamic melting of the vortex lattice. Phys. Rev. Lett. 73, 3580–3583 (1994).

    Article  ADS  Google Scholar 

  44. Dobrovolskiy, O. V., Huth, M., Shklovskij, V. A. & Vovk, R. V. Mobile fluxons as coherent probes of periodic pinning in superconductors. Sci. Rep. 7, 13740 (2017).

    Article  ADS  Google Scholar 

Download references


The authors gratefully acknowledge financial support by the DFG in the framework of the Collaborative Research Center SFB/TRR-173 Spin+X (Project B04). O.V.D. acknowledges the DFG for support through grant no. 374052683 (DO1511/3-1). O.V.D., V.V.K., R.V.V. and V.A.S. acknowledge support from the European Commission within the framework of the programme Marie Sklodowska-Curie Actions—Research and Innovation Staff Exchange (MSCA-RISE) under grant agreement no. 644348 (MagIC). A.V.C. and T.B. acknowledge financial support within the ERC Starting Grant no. 678309 MagnonCircuits. Research leading to these results was also conducted within the framework of the COST Action CA16218 (NANOCOHYBRI) of the European Cooperation in Science and Technology.

Author information

Authors and Affiliations



O.V.D., A.V.C., V.V.K. and V.A.S. conceived the experiment. O.V.D. and A.V.C. designed the samples. T.Böttcher and R.S. fabricated the samples. O.V.D. and R.V.V. performed the measurements. O.V.D., T.Brächer and A.V.C. performed and evaluated the spin-wave transmission simulations. O.V.D. and A.V.C. led the project. All authors discussed the results and co-wrote the manuscript.

Corresponding author

Correspondence to O. V. Dobrovolskiy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Jason Robinson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrovolskiy, O.V., Sachser, R., Brächer, T. et al. Magnon–fluxon interaction in a ferromagnet/superconductor heterostructure. Nat. Phys. 15, 477–482 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing