Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient topological materials discovery using symmetry indicators

Abstract

Although the richness of spatial symmetries has led to a rapidly expanding inventory of possible topological crystalline (TC) phases of electrons, physical realizations have been slow to materialize due to the practical difficulty in ascertaining band topology in realistic calculations. Here, we integrate the recently established theory of symmetry indicators of band topology into first-principles band-structure calculations, and test it on a database of previously synthesized crystals. On applying our algorithm to just 8 out of the 230 space groups, we are able to efficiently unearth topological materials and predict a diversity of topological phenomena, including: a screw-protected three-dimensional TC insulator, β-MoTe2, with gapped surfaces except for one-dimensional helical hinge states; a rotation-protected TC insulator, BiBr, with coexisting surface Dirac cones and hinge states; non-centrosymmetric \({\Bbb Z}_2\) topological insulators undetectable using the well-established parity criterion, AgXO (X = Na, K, Rb); a Dirac semimetal MgBi2O6; a Dirac nodal-line semimetal AgF2; and a metal with three-fold degenerate band crossing near the Fermi energy, AuLiMgSn. Our work showcases how recent theoretical insights into the fundamentals of band structures can aid in the practical goal of discovering new topological materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topological materials discovery algorithm.
Fig. 2: Relations of TI/TCI to \({\Bbb Z}_4\) SI group and numerical results of MoTe2.
Fig. 3: Numerical results of BiBr.
Fig. 4: Electronic structure of the non-centrosymmetric strong TI AgNaO.
Fig. 5: Electronic structure of Dirac semimetal MgBi2O6.
Fig. 6: Statistics of topological materials.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  2. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  3. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  4. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  ADS  Google Scholar 

  5. Slager, R.-J., Mesaros, A., Juricic, V. & Zaanen, J. The space group classification of topological band-insulators. Nat. Phys. 9, 98–102 (2013).

    Article  Google Scholar 

  6. Ando, Y. & Fu, L. Topological crystalline insulators and topological superconductors: From concepts to materials. Annu. Rev. Condens. Matter Phys. 6, 361–381 (2015).

    Article  ADS  Google Scholar 

  7. Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass fermions. Nature 532, 189–194 (2016).

    Article  ADS  Google Scholar 

  8. Wieder, B. J. et al. Wallpaper fermions and the nonsymmorphic Dirac insulator. Science 361, 246–251 (2018).

    Article  ADS  Google Scholar 

  9. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).

    Article  ADS  Google Scholar 

  10. Fang, C. & Fu, L. Rotation anomaly and topological crystalline insulators. Preprint at https://arxiv.org/abs/1709.01929 (2017).

  11. Langbehn, J., Peng, Y., Trifunovic, L., von Oppen, F. & Brouwer, P. W. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 119, 246401 (2017).

    Article  ADS  Google Scholar 

  12. Song, Z., Fang, Z. & Fang, C. d-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017).

    Article  ADS  Google Scholar 

  13. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).

    Article  ADS  Google Scholar 

  14. Song, Z., Zhang, T., Fang, Z. & Fang, C. Quantitative mappings between symmetry and topology in solids. Nat. Commun. 9, 3530 (2018).

    Article  ADS  Google Scholar 

  15. Khalaf, E., Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry indicators and anomalous surface states of topological crystalline insulators. Phys. Rev. X 8, 031070 (2018).

    Google Scholar 

  16. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  17. Fang, C., Gilbert, M. J. & Bernevig, B. A. Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012).

    Article  ADS  Google Scholar 

  18. Turner, A. M., Zhang, Y., Mong, R. S. K. & Vishwanath, A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).

    Article  ADS  Google Scholar 

  19. Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    Article  ADS  Google Scholar 

  20. Po, H. C., Watanabe, H. & Vishwanath, A. Fragile topology and Wannier obstructions. Phys. Rev. Lett. 212, 126402 (2018).

    Article  ADS  Google Scholar 

  21. Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 50 (2017).

    Article  ADS  Google Scholar 

  22. Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017).

    Google Scholar 

  23. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article  ADS  Google Scholar 

  24. Watanabe, H., Po, H. C. & Vishwanath, A. Structure and topology of band structures in the 1651 magnetic space groups. Sci. Adv. 4, eaat8685 (2018).

    Article  ADS  Google Scholar 

  25. Song, Z., Fang, Z. & Fang, C. Diagnosis for nonmagnetic topological semimetals in the absence of spin–orbital coupling. Phys. Rev. X 8, 031069 (2018).

    Google Scholar 

  26. Hellenbrandt, M. The Inorganic Crystal Structure Database (ICSD)—present and future. Crystallogr. Rev. 10, 17–22 (2004).

    Article  Google Scholar 

  27. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M. & Wondratschek, H. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. A 62, 115–128 (2006).

    Article  ADS  Google Scholar 

  28. Brixner, L. H. Preparation and properties of the single crystalline AB2-type selenides and tellurides of niobium, tantalum, molybdenum and tungsten. J. Inorg. Nucl. Chem. 24, 257–263 (1962).

    Article  Google Scholar 

  29. Brown, B. E. The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268–274 (1966).

    Article  Google Scholar 

  30. Clarke, R., Marseglia, E. & Hughes, H. P. A low-temperature structural phase transition in β-MoTe2. Philos. Mag. B 38, 121–126 (1978).

    Article  ADS  Google Scholar 

  31. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  ADS  Google Scholar 

  32. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    Article  Google Scholar 

  33. Tamai, A. et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2. Phys. Rev. X 6, 031021 (2016).

    Google Scholar 

  34. Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).

    Article  ADS  Google Scholar 

  35. Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

    Article  ADS  Google Scholar 

  36. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (K. Schwarz, Technische University Wien, Austria, 2001).

  37. von Benda, H., Simon, A. & Bauhofer, W. Zur Kenntnis von BiBr und BiBr1,167. Z. Anorg. Allg. Chem. 438, 53–67 (1978).

    Article  Google Scholar 

  38. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    Article  ADS  Google Scholar 

  39. Kane, C. L. & Mele, E. J. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  40. Feng, W., Wen, J., Zhou, J., Xiao, D. & Yao, Y. First-principles calculation of topological invariants within the FP-LAPW formalism.Comput. Phys. Commun. 183, 1849–1859 (2012).

    Article  ADS  Google Scholar 

  41. Umamaheswari, R., Yogeswari, M. & Kalpana, G. Electronic properties and structural phase transition in A4 [M4O4] (A = Li, Na, K and Rb; M = Ag and Cu): a first principles study. Solid State Commun. 155, 62–68 (2013).

    Article  ADS  Google Scholar 

  42. Kumada, N., Takahashi, N., Kinomura, N. & Sleight, A. W. Preparation of ABi2O6 (A = Mg, Zn) with the trirutile-type structure. Mater. Res. Bull. 32, 1003–1008 (1997).

    Article  Google Scholar 

  43. Lightfoot, P., Krok, F., Nowinski, J. L. & Bruce, P. G. Structure of the cubic intercalate MgxTiS2. J. Mater. Chem. 2, 139–140 (1992).

    Article  Google Scholar 

  44. Kikegawa, T. & Iwasaki, H. An X-ray-diffraction study of lattice compression and phase-transition of crystalline phosphorus. Acta Crystallogr. B 39, 158–164 (1983).

    Article  Google Scholar 

  45. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

    Article  Google Scholar 

  46. Fischer, R. & Mueller, B. G. Die Kristallstruktur von AgIIF[AgIIIF4]. Z. Anorg. Allg. Chem. 628, 2592–2596 (2002).

    Article  Google Scholar 

  47. Zhou, X. et al. Topological crystalline insulator states in the Ca2As family. Phys. Rev. B 98, 241104(R) (2018).

    Article  ADS  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys, Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  49. Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

H.C.P. and A.V. thank E. Khalaf and H. Watanabe for earlier collaborations on related topics. F.T. and X.W. were supported by National Key R&D Program of China (Nos. 2018YFA0305704 and 2017YFA0303203), the NSFC (Nos. 11525417, 11834006, 51721001 and 11790311) and the excellent programme in Nanjing University. F.T. was also supported by the program B for Outstanding PhD candidate of Nanjing University. X.W. was partially supported by a QuantEmX award funded by the Gordon and Betty Moore Foundation’s EPIQS Initiative through ICAM-I2CAM, Grant GBMF5305 and by the Institute of Complex Adaptive Matter (ICAM). A.V. is supported by NSF DMR-1411343, a Simons Investigator Grant, and by the ARO MURI on topological insulators, grant W911NF- 12-1-0961. H.C.P. is supported by a Pappalardo Fellowship at MIT.

Author information

Authors and Affiliations

Authors

Contributions

X.W., A.V. and H.C.P. conceived and designed the project. F.T. performed ab initio calculations. All authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Xiangang Wan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figs. 1–13 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Po, H.C., Vishwanath, A. et al. Efficient topological materials discovery using symmetry indicators. Nat. Phys. 15, 470–476 (2019). https://doi.org/10.1038/s41567-019-0418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0418-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing