Abstract
Although the richness of spatial symmetries has led to a rapidly expanding inventory of possible topological crystalline (TC) phases of electrons, physical realizations have been slow to materialize due to the practical difficulty in ascertaining band topology in realistic calculations. Here, we integrate the recently established theory of symmetry indicators of band topology into first-principles band-structure calculations, and test it on a database of previously synthesized crystals. On applying our algorithm to just 8 out of the 230 space groups, we are able to efficiently unearth topological materials and predict a diversity of topological phenomena, including: a screw-protected three-dimensional TC insulator, β-MoTe2, with gapped surfaces except for one-dimensional helical hinge states; a rotation-protected TC insulator, BiBr, with coexisting surface Dirac cones and hinge states; non-centrosymmetric \({\Bbb Z}_2\) topological insulators undetectable using the well-established parity criterion, AgXO (X = Na, K, Rb); a Dirac semimetal MgBi2O6; a Dirac nodal-line semimetal AgF2; and a metal with three-fold degenerate band crossing near the Fermi energy, AuLiMgSn. Our work showcases how recent theoretical insights into the fundamentals of band structures can aid in the practical goal of discovering new topological materials.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Spinful hinge states in the higher-order topological insulators WTe2
Nature Communications Open Access 31 March 2023
-
Topological zero-dimensional defect and flux states in three-dimensional insulators
Nature Communications Open Access 02 October 2022
-
Discovery of $${\hat{\boldsymbol{C}}}_2$$ rotation anomaly in topological crystalline insulator SrPb
Nature Communications Open Access 06 April 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
References
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).
Slager, R.-J., Mesaros, A., Juricic, V. & Zaanen, J. The space group classification of topological band-insulators. Nat. Phys. 9, 98–102 (2013).
Ando, Y. & Fu, L. Topological crystalline insulators and topological superconductors: From concepts to materials. Annu. Rev. Condens. Matter Phys. 6, 361–381 (2015).
Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass fermions. Nature 532, 189–194 (2016).
Wieder, B. J. et al. Wallpaper fermions and the nonsymmorphic Dirac insulator. Science 361, 246–251 (2018).
Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).
Fang, C. & Fu, L. Rotation anomaly and topological crystalline insulators. Preprint at https://arxiv.org/abs/1709.01929 (2017).
Langbehn, J., Peng, Y., Trifunovic, L., von Oppen, F. & Brouwer, P. W. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 119, 246401 (2017).
Song, Z., Fang, Z. & Fang, C. d-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017).
Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).
Song, Z., Zhang, T., Fang, Z. & Fang, C. Quantitative mappings between symmetry and topology in solids. Nat. Commun. 9, 3530 (2018).
Khalaf, E., Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry indicators and anomalous surface states of topological crystalline insulators. Phys. Rev. X 8, 031070 (2018).
Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).
Fang, C., Gilbert, M. J. & Bernevig, B. A. Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012).
Turner, A. M., Zhang, Y., Mong, R. S. K. & Vishwanath, A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).
Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).
Po, H. C., Watanabe, H. & Vishwanath, A. Fragile topology and Wannier obstructions. Phys. Rev. Lett. 212, 126402 (2018).
Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 50 (2017).
Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017).
Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).
Watanabe, H., Po, H. C. & Vishwanath, A. Structure and topology of band structures in the 1651 magnetic space groups. Sci. Adv. 4, eaat8685 (2018).
Song, Z., Fang, Z. & Fang, C. Diagnosis for nonmagnetic topological semimetals in the absence of spin–orbital coupling. Phys. Rev. X 8, 031069 (2018).
Hellenbrandt, M. The Inorganic Crystal Structure Database (ICSD)—present and future. Crystallogr. Rev. 10, 17–22 (2004).
Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M. & Wondratschek, H. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. A 62, 115–128 (2006).
Brixner, L. H. Preparation and properties of the single crystalline AB2-type selenides and tellurides of niobium, tantalum, molybdenum and tungsten. J. Inorg. Nucl. Chem. 24, 257–263 (1962).
Brown, B. E. The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268–274 (1966).
Clarke, R., Marseglia, E. & Hughes, H. P. A low-temperature structural phase transition in β-MoTe2. Philos. Mag. B 38, 121–126 (1978).
Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).
Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).
Tamai, A. et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2. Phys. Rev. X 6, 031021 (2016).
Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).
Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).
Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (K. Schwarz, Technische University Wien, Austria, 2001).
von Benda, H., Simon, A. & Bauhofer, W. Zur Kenntnis von BiBr und BiBr1,167. Z. Anorg. Allg. Chem. 438, 53–67 (1978).
Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).
Kane, C. L. & Mele, E. J. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).
Feng, W., Wen, J., Zhou, J., Xiao, D. & Yao, Y. First-principles calculation of topological invariants within the FP-LAPW formalism.Comput. Phys. Commun. 183, 1849–1859 (2012).
Umamaheswari, R., Yogeswari, M. & Kalpana, G. Electronic properties and structural phase transition in A4 [M4O4] (A = Li, Na, K and Rb; M = Ag and Cu): a first principles study. Solid State Commun. 155, 62–68 (2013).
Kumada, N., Takahashi, N., Kinomura, N. & Sleight, A. W. Preparation of ABi2O6 (A = Mg, Zn) with the trirutile-type structure. Mater. Res. Bull. 32, 1003–1008 (1997).
Lightfoot, P., Krok, F., Nowinski, J. L. & Bruce, P. G. Structure of the cubic intercalate MgxTiS2. J. Mater. Chem. 2, 139–140 (1992).
Kikegawa, T. & Iwasaki, H. An X-ray-diffraction study of lattice compression and phase-transition of crystalline phosphorus. Acta Crystallogr. B 39, 158–164 (1983).
Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).
Fischer, R. & Mueller, B. G. Die Kristallstruktur von AgIIF[AgIIIF4]. Z. Anorg. Allg. Chem. 628, 2592–2596 (2002).
Zhou, X. et al. Topological crystalline insulator states in the Ca2As family. Phys. Rev. B 98, 241104(R) (2018).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys, Rev. Lett. 77, 3865–3868 (1996).
Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).
Acknowledgements
H.C.P. and A.V. thank E. Khalaf and H. Watanabe for earlier collaborations on related topics. F.T. and X.W. were supported by National Key R&D Program of China (Nos. 2018YFA0305704 and 2017YFA0303203), the NSFC (Nos. 11525417, 11834006, 51721001 and 11790311) and the excellent programme in Nanjing University. F.T. was also supported by the program B for Outstanding PhD candidate of Nanjing University. X.W. was partially supported by a QuantEmX award funded by the Gordon and Betty Moore Foundation’s EPIQS Initiative through ICAM-I2CAM, Grant GBMF5305 and by the Institute of Complex Adaptive Matter (ICAM). A.V. is supported by NSF DMR-1411343, a Simons Investigator Grant, and by the ARO MURI on topological insulators, grant W911NF- 12-1-0961. H.C.P. is supported by a Pappalardo Fellowship at MIT.
Author information
Authors and Affiliations
Contributions
X.W., A.V. and H.C.P. conceived and designed the project. F.T. performed ab initio calculations. All authors contributed to the writing and editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Text, Supplementary Figs. 1–13 and Supplementary References.
Rights and permissions
About this article
Cite this article
Tang, F., Po, H.C., Vishwanath, A. et al. Efficient topological materials discovery using symmetry indicators. Nat. Phys. 15, 470–476 (2019). https://doi.org/10.1038/s41567-019-0418-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-019-0418-7
This article is cited by
-
Spinful hinge states in the higher-order topological insulators WTe2
Nature Communications (2023)
-
Discovery of chalcogenides structures and compositions using mixed fluxes
Nature (2022)
-
Topological zero-dimensional defect and flux states in three-dimensional insulators
Nature Communications (2022)
-
Discovery of $${\hat{\boldsymbol{C}}}_2$$ rotation anomaly in topological crystalline insulator SrPb
Nature Communications (2021)
-
Topological materials discovery from crystal symmetry
Nature Reviews Materials (2021)