Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proton superfluidity and charge radii in proton-rich calcium isotopes

Abstract

One of the most important global properties of the atomic nucleus is its size. Experimentally determined nuclear charge radii carry unique information on the nuclear force and complex dynamics of protons and neutrons moving inside the nucleus. The intricate behaviour of charge radii along the chain of Ca isotopes, including the unexpectedly large charge radius of neutron-rich 52Ca, poses a daunting challenge for nuclear theory1. Here we present the measurements of the charge radii of proton-rich isotopes 36,37,38Ca, whose properties are impacted by the interplay between nuclear superfluidity and weak binding. Calculations carried out within nuclear density functional theory show that the combination of a novel interaction2 and a state-of-the-art theoretical method can successfully explain the behaviour of charge radii from the lightest to the heaviest Ca isotopes. Through this model, we show how the new data on 36,37,38Ca elucidate the nature of nucleonic pairing in weakly bound proton-rich isotopes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up and hyperfine spectra.
Fig. 2: Charge radii of Ca isotopes.
Fig. 3: Single-proton structure.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Garcia Ruiz, R. F. et al. Unexpectedly large charge radii of neutron-rich calcium isotopes. Nat. Phys. 12, 594–598 (2016).

    Article  Google Scholar 

  2. Fayans, S. A. Towards a universal nuclear density functional. JETP Lett. 68, 169–174 (1998).

    Article  ADS  Google Scholar 

  3. Bohr, A., Mottelson, B. R. & Pines, D. Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state. Phys. Rev. 110, 936–938 (1958).

    Article  ADS  Google Scholar 

  4. Brink, D. M. & Broglia, R. A. Nuclear Superfluidity, Pairing in Finite Systems (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  5. Broglia, R. A. & Zelevinski, V. (eds.) 50 Years of Nuclear BCS (World Scientific, Singapore, 2012).

  6. Dean, D. J. & Hjorth-Jensen, M. Pairing in nuclear systems: from neutron stars to finite nuclei. Rev. Mod. Phys. 75, 607–656 (2003).

    Article  ADS  Google Scholar 

  7. Dobaczewski, J., Nazarewicz, W. & Reinhard, P.-G. Pairing interaction and self-consistent densities in neutron-rich nuclei. Nucl. Phys. A. 693, 361–373 (2001).

    Article  ADS  Google Scholar 

  8. Jensen, A. S., Riisager, K., Fedorov, D. V. & Garrido, E. Structure and reactions of quantum halos. Rev. Mod. Phys. 76, 215–261 (2004).

    Article  ADS  Google Scholar 

  9. Pfützner, M., Karny, M., Grigorenko, L. V. & Riisager, K. Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567–619 (2012).

    Article  ADS  Google Scholar 

  10. Agrawal, B. K., Sil, T., Samaddar, S. K., De, J. N. & Shlomo, S. Coulomb energy differences in mirror nuclei revisited. Phys. Rev. C 64, 024305 (2001).

    Article  ADS  Google Scholar 

  11. Caurier, E., Langanke, K., Martínez-Pinedo, G., Nowacki, F. & Vogel, P. Shell model description of isotope shifts in calcium. Phys. Lett. B 522, 240–244 (2001).

    Article  ADS  Google Scholar 

  12. Minamisono, K. et al. Charge radii of neutron deficient 52,53Fe produced by projectile fragmentation. Phys. Rev. Lett. 117, 252501 (2016).

    Article  ADS  Google Scholar 

  13. Reinhard, P.-G. & Nazarewicz, W. Toward a global description of nuclear charge radii: exploring the Fayans energy density functional. Phys. Rev. C 95, 064328 (2017).

    Article  ADS  Google Scholar 

  14. Vermeeren, L. et al. The mean square nuclear charge radius of 39Ca. J. Phys. G 22, 1517–1520 (1996).

    Article  ADS  Google Scholar 

  15. Morrissey, D. J., Sherrill, B. M., Steiner, M., Stolz, A. & Wiedenhoever, I. Commissioning the A1900 projectile fragment separator. Nucl. Instrum. Methods Phys. Res. B 204, 90–96 (2003).

    Article  ADS  Google Scholar 

  16. Cooper, K. et al. Extraction of thermalized projectile fragments from a large volume gas cell. Nucl. Instrum. Methods Phys. Res. A 763, 543–546 (2014).

    Article  ADS  Google Scholar 

  17. Trinder, W. et al. Study of the β decays of 37Ca and 36Ca. Nucl. Phys. A. 620, 191–213 (1997).

    Article  ADS  Google Scholar 

  18. Campbell, P., Moore, I. D. & Pearson, M. R. Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127–180 (2016).

    Article  ADS  Google Scholar 

  19. Neugart, R. et al. Collinear laser spectroscopy at ISOLDE: new methods and highlights. J. Phys. G 44, 064002 (2017).

    Article  ADS  Google Scholar 

  20. Hick, A. et al. Beta decay of the new isotopes 52K, 52Ca and 52Sc; a test of the shell model far from stability. Phys. Rev. C 31, 2226–2237 (1985).

    Article  ADS  Google Scholar 

  21. Minamisono, K. et al. Commissioning of the collinear laser spectroscopy system in the BECOLA facility at NSCL. Nucl. Instrum. Methods Phys. Res. A 709, 85–94 (2013).

    Article  ADS  Google Scholar 

  22. Rossi, D. M. et al. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams. Rev. Sci. Instrum. 85, 093503 (2014).

    Article  ADS  Google Scholar 

  23. Barquest, B. R. et al. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes. Nucl. Instrum. Methods Phys. Res. A 866, 18–28 (2017).

    Article  ADS  Google Scholar 

  24. Nieminen, A. et al. On-line ion cooling and bunching for collinear laser spectroscopy. Phys. Rev. Lett. 88, 094801 (2002).

    Article  ADS  Google Scholar 

  25. Campbell, P. et al. Laser spectroscopy of cooled zirconium fission fragments. Phys. Rev. Lett. 89, 082501 (2002).

    Article  ADS  Google Scholar 

  26. Shi, C. et al. Unexpectedly large difference of the electron density at the nucleus in the 4p 2P1/2,3/2 fine-structure doublet of Ca+. Appl. Phys. B 123, 2 (2016).

    Article  ADS  Google Scholar 

  27. Klein, A. et al. Moments and mean square charge radii of short-lived argon isotopes. Nucl. Phys. A 607, 1–22 (1996).

    Article  ADS  Google Scholar 

  28. Rossi, D. M. et al. Charge radii of neutron-deficient 36K and 37K. Phys. Rev. C 92, 014305 (2015).

    Article  ADS  Google Scholar 

  29. Dobaczewski, J. et al. Mean-field description of ground-state properties of drip-line nuclei: Pairing and continuum effects. Phys. Rev. C 53, 2809–2840 (1996).

    Article  ADS  Google Scholar 

  30. Bender, M., Heenen, P.-H. & Reinhard, P.-G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003).

    Article  ADS  Google Scholar 

  31. Klüpfel, P., Reinhard, P.-G., Bürvenich, T. J. & Maruhn, J. A. Variations on a theme by Skyrme: a systematic study of adjustments of model parameters. Phys. Rev. C 79, 034310 (2009).

    Article  ADS  Google Scholar 

  32. Fayans, S. A., Tolokonnikov, S. V., Trykov, E. L. & Zawischa, D. Nuclear isotope shifts within the local energy-density functional approach. Nucl. Phys. A 676, 49–119 (2000).

    Article  ADS  Google Scholar 

  33. Dobaczewski, J., Flocard, H. & Treiner, J. Hartree–Fock–Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422, 103–139 (1984).

    Article  ADS  Google Scholar 

  34. Hammen, M. et al. From calcium to cadmium: testing the pairing functional through charge radii measurements of 100−130Cd. Phys. Rev. Lett. 121, 102501 (2018).

    Article  ADS  Google Scholar 

  35. Fricke, G. & Heilig, K. Nuclear Charge Radii (Springer, Berlin, 2004).

  36. Äystö, J. Development and applications of the IGISOL technique. Nucl. Phys. A 693, 477–497 (2001).

    Article  ADS  Google Scholar 

  37. Brockton Electro-Optics Corp. Take Control of Your Laser! http://www.brocktoneo.com (accessed in 2016).

  38. Ryder, C. A. et al. Population distribution subsequent to charge exchange of 29.85 keV Ni+ on sodium vapor. Spectrochim. Acta B 113, 16–21 (2015).

    Article  ADS  Google Scholar 

  39. Stancik, A. L. & Brauns, E. B. A simple asymmetric lineshape for fitting infrared absorption spectra. Vib. Spectrosc. 47, 66–69 (2008).

    Article  Google Scholar 

  40. Reinhard, P.-G., Bender, M., Rutz, K. & Maruhn, J. An HFB scheme in natural orbitals. Z. Phys. A 358, 277–278 (1997).

    Article  ADS  Google Scholar 

  41. Erler, J., Klüpfel, P. & Reinhard, P.-G. A stabilized pairing functional. Eur. Phys. J. A 37, 81–86 (2008).

    Article  ADS  Google Scholar 

  42. Hinohara, N. & Nazarewicz, W. Pairing Nambu–Goldstone modes within nuclear density functional theory. Phys. Rev. Lett. 116, 152502 (2016).

    Article  ADS  Google Scholar 

  43. Duguet, T., Bonche, P., Heenen, P.-H. & Meyer, J. Pairing correlations. I. description of odd nuclei in mean-field theories. Phys. Rev. C 65, 014310 (2001).

    Article  ADS  Google Scholar 

  44. Schunck, N. et al. One-quasiparticle states in the nuclear energy density functional theory. Phys. Rev. C 81, 024316 (2010).

    Article  ADS  Google Scholar 

  45. Tolokonnikov, S. V. & Saperstein, E. E. Description of superheavy nuclei on the basis of a modified version of the DF3 energy functional. Phys. At. Nucl. 73, 1684–1699 (2010).

    Article  Google Scholar 

  46. Saperstein, E. E. & Tolokonnikov, S. V. Self-consistent theory of finite Fermi systems and radii of nuclei. Phys. At. Nucl. 74, 1277–1298 (2011).

    Article  Google Scholar 

  47. Brown, B. A. Mirror charge radii and the neutron equation of state. Phys. Rev. Lett. 119, 122502 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation, Grant No. PHY-15-65546; the US Department of Energy, National Nuclear Security Administration, Grant No. DE-NA0002924; the US Department of Energy, Office of Science, Office of Nuclear Physics, Grant Nos. DE-SC0013365, DE-SC0018083 and DE-AC05-00OR22725 with UT-Battelle, LLC; the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 279384907 – SFB 1245; and the German Federal Ministry of Education and Research (BMBF), Grant No. 05P12RFFTG.

Author information

Authors and Affiliations

Authors

Contributions

A.J.M., K.M., A.K., D.G., J.D.L., Y.L., P.F.M., S.V.P., D.M.R., F.S., C.S. and A.T. performed the experiment. A.J.M., C.K., B.M., W. Nörtershäuser and J.W. designed and installed the upgraded photon detection system. A.J.M. performed data analysis and discussed with K.M., A.K., W. Nörtershäuser and D.M.R. W. Nazarewicz and P.-G.R. performed theoretical analysis. A.J.M., K.M., W. Nazarewicz and P.-G.R. prepared the figures. A.J.M., K.M., W. Nazarewicz and P.-G.R. prepared the manuscript. All authors discussed the results and contributed to the manuscript at all stages.

Corresponding author

Correspondence to K. Minamisono.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, A.J., Minamisono, K., Klose, A. et al. Proton superfluidity and charge radii in proton-rich calcium isotopes. Nat. Phys. 15, 432–436 (2019). https://doi.org/10.1038/s41567-019-0416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0416-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing