Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selection mechanism at the onset of active turbulence

Abstract

Active turbulence describes a flow regime that is erratic, and yet endowed with a characteristic length scale1. It arises in animate soft-matter systems as diverse as bacterial baths2, cell tissues3 and reconstituted cytoskeletal preparations4. However, the way that these turbulent dynamics emerge in active systems has so far evaded experimental scrutiny. Here, we unveil a direct route to active nematic turbulence by demonstrating that, for radially aligned unconfined textures, the characteristic length scale emerges at the early stages of the instability. We resolve two-dimensional distortions of a microtubule-based extensile system5 in space and time, and show that they can be characterized in terms of a growth rate that exhibits quadratic dependence on a dominant wavenumber. This wavelength selection mechanism is justified on the basis of a continuum model for an active nematic including viscous coupling to the adjacent fluid phase. Our findings are in line with the classical pattern-formation studies in non-active systems6, bettering our understanding of the principles of active self-organization, and providing potential perspectives for the control of biological fluids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Route to active turbulence.
Fig. 2: Sequential instabilities.
Fig. 3: Dependence of k* and Ω* on material parameters and scaling Ω*(k*).

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on request.

References

  1. Giomi, L. Geometry and topology of turbulence in active nematics. Phys. Rev. X 5, 031003 (2015).

    Google Scholar 

  2. Wensink, H. H. et al. Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109, 14308–14313 (2012).

    Article  ADS  Google Scholar 

  3. Blanch-Mercader, C. et al. Turbulent dynamics of epithelial cell cultures. Phys. Rev. Lett. 120, 208101 (2018).

    Article  ADS  Google Scholar 

  4. Guillamat, P., Ignés-Mullol, J. & Sagués, F. Taming active turbulence with patterned soft interfaces. Nat. Commun. 8, 564 (2017).

    Article  ADS  Google Scholar 

  5. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    Article  ADS  Google Scholar 

  6. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article  ADS  Google Scholar 

  7. Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).

    Article  ADS  Google Scholar 

  8. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article  ADS  Google Scholar 

  9. Menzel, A. M. Tuned, driven and active soft matter. Phys. Rep. 554, 1–45 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  10. Bratanov, V., Jenko, F. & Frey, E. New class of turbulence in active fluids. Proc. Natl Acad. Sci. USA 112, 15048–15053 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  11. Urzay, J., Doostmohammadi, A. & Yeomans, J. M. Multi-scale statistics of turbulence motorized by active matter. J. Fluid Mech. 822, 762–773 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  12. Slomka, J. & Dunkel, J. Symmetry breaking and turbulence in active fluids. Proc. Natl Acad. Sci. USA 114, 15048–15053 (2017).

    Article  Google Scholar 

  13. Thampi, S. P., Golestanian, R. & Yeomans, J. M. Instabilities and topological defects in active nematics. Europhys. Lett. 105, 18001 (2014).

    Article  ADS  Google Scholar 

  14. Giomi, L., Bowick, M. J., Mishra, P., Sknepnek, R. & Marchetti, M. C. Defect dynamics in active nematics. Phil. Trans. R. Soc. A 372, 20130365 (2014).

    Article  ADS  Google Scholar 

  15. Aditi Simha, R. & Ramaswamy, S. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002).

    Article  ADS  Google Scholar 

  16. Edwards, S. A. & Yeomans, J. M. Spontaneous flow states in active nematics: a unified picture. Europhys. Lett. 85, 18008 (2009).

    Article  ADS  Google Scholar 

  17. Zhou, S., Sokolov, A., Lavrentovich, O. D. & Aranson, I. S. Living liquid crystals. Proc. Natl Acad. Sci. USA 111, 1265–1270 (2014).

    Article  ADS  Google Scholar 

  18. Duclos, G. et al. Spontaneous shear flow in confined cellular nematics. Nat. Phys. 14, 728–732 (2018).

    Article  Google Scholar 

  19. Guillamat, P., Ignés-Mullol, J. & Sagués, F. Control of active liquid crystals with a magnetic field. Proc. Natl Acad. Sci. USA 113, 5498–5502 (2016).

    Article  ADS  Google Scholar 

  20. Giomi, L., Bowick, M. J., Ma, X. & Marchetti, M. C. Defect annihilation and proliferation in active nematics. Phys. Rev. Lett. 110, 228101 (2013).

    Article  ADS  Google Scholar 

  21. Thampi, S. P., Golestanian, R. & Yeomans, J. M. Velocity correlations in an active nematic. Phys. Rev. Lett. 111, 118101 (2013).

    Article  ADS  Google Scholar 

  22. Pismen, L. M. & Sagués, F. Viscous dissipation and dynamics of defects in an active nematic interface. Eur. Phys. J. E 40, 92 (2017).

    Article  Google Scholar 

  23. Jülicher, F., Kruse, K., Prost, J. & Joanny, J. F. Active behavior of the cytoskeleton. Phys. Rep. 449, 3–28 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  24. Prost, J., Jülicher, F. & Joanny, J. F. Active gel physics. Nat. Phys. 11, 111–117 (2015).

    Article  Google Scholar 

  25. Voituriez, R., Joanny, J. F. & Prost, J. Spontaneous flow transition in active polar gels. Europhys. Lett. 70, 404–410 (2005).

    Article  ADS  Google Scholar 

  26. Guillamat, P., Ignés-Mullol, J., Shankar, S., Marchetti, M. C. & Sagues, F. Probing the shear viscosity of an active nematic film. Phys. Rev. E 94, 060602(R) (2016).

    Article  ADS  Google Scholar 

  27. Gao, T., Blackwell, R., Glaser, M. A., Betterton, M. D. & Shelley, M. J. Multiscale polar theory of microtubule and motor-protein assemblies. Phys. Rev. Lett. 114, 048101 (2015).

    Article  ADS  Google Scholar 

  28. Gao, T., Betterton, M. D., Jhang, A.-S. & Shelley, M. J. Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid. Phys. Rev. Fluids 2, 093302 (2017).

    Article  ADS  Google Scholar 

  29. Henkin, G., DeCamp, S. J., Chen, D. T. N., Sanchez, T. & Dogic, Z. Tunable dynamics of microtubule-based active isotropic gels. Phil. Trans. R. Soc. A 372, 20140142 (2014).

    Article  ADS  Google Scholar 

  30. Hemingway, E. J., Mishra, P., Marchetti, M. C. & Fielding, S. M. Correlation lengths in hydrodynamic models of active nematics. Soft Matter 12, 7943–7952 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Alert and M. Shelley for fruitful discussions. B.M.-P. thanks S. Marco for advice regarding image analysis. The authors are indebted to the Brandeis University MRSEC Biosynthesis facility for providing the tubulin. The authors thank M. Pons, A. LeRoux and G. Iruela (Universitat de Barcelona) for their assistance in the expression of motor proteins. B.M.-P., J.I.-M. and F.S. acknowledge funding from MINECO (project FIS2016-78507-C2-1-P, AEI/FEDER, EU). J.C. acknowledges support from MINECO (project FIS2016-78507-C2-2-P, AEI/FEDER, EU) and the Generalitat de Catalunya under project 2014-SGR-878. B.M.-P. acknowledges funding from UAM under the IFIMAC Master Grant, and from Generalitat de Catalunya through a FI-2018 PhD Fellowship. Brandeis University MRSEC Biosynthesis facility is supported by NSF MRSEC DMR-1420382.

Author information

Authors and Affiliations

Authors

Contributions

F.S., J.I.-M. and B.M.-P. conceived the experiments. J.I.-M. and B.M.-P. designed the experimental set-up. B.M.-P. performed the experiments. F.S., J.I.-M. and B.M.-P. analysed and interpreted the data. J.C. performed the theoretical analysis. F.S. wrote the manuscript in collaboration with all the authors.

Corresponding author

Correspondence to Jordi Ignés-Mullol.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Discussion, Supplementary References 1–3.

Reporting Summary

Supplementary Video 1

Route to active turbulence. The capillary tube is introduced into the open sample, inducing the radial alignment of the material, which rapidly buckles to display a concentric pattern. Proliferation of ±1/2 defects prompts the breaking of the structure. Experimental conditions are: [ATP] = 1.5 mM, [streptavidin] = 8.2 µg ml–1, [MTs] = 1.3 mg ml–1 and [PEG] = 1.7%.

Supplementary Video 2

Sequential instabilities. At low concentration of motors (that is, low concentration of streptavidin), it was possible to observe sequential patterns with orthogonal directions formed because of repeated bend instabilities. Experimental conditions are: [ATP] = 1.5 mM, [streptavidin] = 7.5 µg ml–1, [MTs] = 1.3 mg ml–1 and [PEG] = 1.7%(w/w).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Prat, B., Ignés-Mullol, J., Casademunt, J. et al. Selection mechanism at the onset of active turbulence. Nat. Phys. 15, 362–366 (2019). https://doi.org/10.1038/s41567-018-0411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0411-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing