Abstract

Direct manipulation of the atomic lattice using intense long-wavelength laser pulses has become a viable approach to create new states of matter in complex materials. Conventionally, a high-frequency vibrational mode is driven resonantly by a mid-infrared laser pulse and the lattice structure is modified through indirect coupling of this infrared-active phonon to other, lower-frequency lattice modulations. Here, we drive the lowest-frequency optical phonon in the prototypical transition metal oxide SrTiO3 well into the anharmonic regime with an intense terahertz field. We show that it is possible to transfer energy to higher-frequency phonon modes through nonlinear coupling. Our observations are carried out by directly mapping the lattice response to the coherent drive field with femtosecond X-ray pulses, enabling direct visualization of the atomic displacements.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid–solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).

  2. 2.

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004).

  3. 3.

    Beaud, P. et al. A time-dependent order parameter for ultrafast photoinduced phase transitions. Nat. Mater. 13, 923–927 (2014).

  4. 4.

    Chuang, Y. D. et al. Real-time manifestation of strongly coupled spin and charge order parameters in stripe-ordered La1.75Sr0.25NiO4 nickelate crystals using time-resolved resonant X-ray diffraction. Phys. Rev. Lett. 110, 127404 (2013).

  5. 5.

    Schlom, D. G. et al. Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118–130 (2014).

  6. 6.

    Tomioka, Y., Asamitsu, A., Kuwahara, H., Moritomo, Y. & Tokura, Y. Magnetic-field-induced metal-insulator phenomena in Pr1−xCaxMnO3 with controlled charge-ordering instability. Phys. Rev. B 53, R1689–R1692 (1996).

  7. 7.

    Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).

  8. 8.

    Chen, X. J. et al. Enhancement of superconductivity by pressure-driven competition in electronic order. Nature 466, 950–953 (2010).

  9. 9.

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

  10. 10.

    Först, M., Mankowsky, R. & Cavalleri, A. Mode-selective control of the crystal lattice. Acc. Chem. Res. 48, 380–387 (2015).

  11. 11.

    Först, M. et al. Nonlinear phononics: a new ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

  12. 12.

    Juraschek, D. M. & Maehrlein, S. F. Sum-frequency ionic Raman scattering. Phys. Rev. B 97, 174302 (2018).

  13. 13.

    Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

  14. 14.

    Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 515, 245–248 (2014).

  15. 15.

    Gor’kov, L. P. Phonon mechanism in the most dilute superconductor n-type SrTiO3. Proc. Natl Acad. Sci. USA 113, 4646–4651 (2016).

  16. 16.

    Rowley, S. E. et al. Ferroelectric quantum criticality. Nat. Phys. 10, 367–372 (2014).

  17. 17.

    Edge, J. M., Kedem, Y., Aschauer, U., Spaldin, N. A. & Balatsky, A. V. Quantum critical origin of the superconducting dome in SrTiO3. Phys. Rev. Lett. 115, 247002 (2015).

  18. 18.

    Barker, A. S. & Tinkham, M. Far-infrared ferroelectric vibration mode in SrTiO3. Phys. Rev. 125, 1527–1530 (1962).

  19. 19.

    Cowley, R. A. Temperature dependence of a transverse optic mode in strontium titanate. Phys. Rev. Lett. 9, 159–161 (1962).

  20. 20.

    Yamada, Y. & Shirane, G. Neutron scattering and nature of the soft optical phonon in SrTiO3. J. Phys. Soc. Jpn 26, 396–403 (1969).

  21. 21.

    Cochran, W. Crystal stability and the theory of ferroelectricity. Phys. Rev. Lett. 3, 412–414 (1959).

  22. 22.

    Cochran, W. Crystal stability and the theory of ferroelectricity. Adv. Phys. 9, 387–423 (1960).

  23. 23.

    Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 2001).

  24. 24.

    Müller, K. A. & Burkard, H. SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).

  25. 25.

    De Silvestri, S. et al. Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated Raman scattering in α-perylene crystal from 20 to 300 K. Chem. Phys. Lett. 116, 146–152 (1985).

  26. 26.

    Kohmoto, T., Tada, K., Moriyasu, T. & Fukuda, Y. Observation of coherent phonons in strontium titanate: structural phase transition and ultrafast dynamics of the soft modes. Phys. Rev. B 74, 064303 (2006).

  27. 27.

    Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

  28. 28.

    Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

  29. 29.

    Grübel, S. et al. Ultrafast x-ray diffraction of a ferroelectric soft mode driven by broadband terahertz pulses. Preprint at https://arxiv.org/abs/1602.05435 (2016).

  30. 30.

    Marsik, P. et al. Terahertz ellipsometry study of the soft mode behavior in ultrathin SrTiO3 films. Appl. Phys. Lett. 108, 052901 (2016).

  31. 31.

    Kozina, M. et al. Local terahertz field enhancement for time-resolved X-ray diffraction. Appl. Phys. Lett. 110, 081106 (2017).

  32. 32.

    Spitzer, W. G., Miller, R. C., Kleinman, D. A. & Howarth, L. E. Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2. Phys. Rev. 126, 1710–1721 (1962).

  33. 33.

    Barker, A. S. Temperature dependence of the transverse and longitudinal optic mode frequencies and charges in SrTiO3 and BaTiO3. Phys. Rev. 145, 391–399 (1966).

  34. 34.

    Kozina, M. et al. Ultrafast X-ray diffraction probe of terahertz field-driven soft mode dynamics in SrTiO3. Struct. Dyn. 4, 054301 (2017).

  35. 35.

    Cowley, R. A. Lattice dynamics and phase transitions of strontium titanate. Phys. Rev. 134, A981–A997 (1964).

  36. 36.

    Servoin, J. L., Luspin, Y. & Gervais, F. Infrared dispersion in SrTiO3 at high temperature. Phys. Rev. B 22, 5501–5506 (1980).

  37. 37.

    Denisov, V. N., Mavrin, B. N., Podobedov, V. B. & Scott, J. F. Hyper-Raman spectra and frequency dependence of soft mode damping in SrTiO3. J. Raman Spectrosc. 14, 276–283 (1983).

  38. 38.

    Nuzhnyy, D. et al. Polar phonons in some compressively stressed epitaxial and polycrystalline SrTiO3 thin films. J. Electroceramics 22, 297–301 (2009).

  39. 39.

    Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10367 (1997).

  40. 40.

    von Hoegen, A., Mankowsky, R., Fechner, M., Först, M. & Cavalleri, A. Probing the interatomic potential of solids with strong-field nonlinear phononics. Nature 555, 79–82 (2018).

  41. 41.

    Cartella, A., Nova, T. F., Fechner, M., Merlin, R. & Cavalleri, A. Parametric amplification of optical phonons. Proc. Natl Acad. Sci. USA 115, 12148–12151 (2018).

  42. 42.

    Petzelt, J. et al. Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: Evidence of polar grain boundaries. Phys. Rev. B 64, 184111 (2001).

  43. 43.

    Kwei, G. H., Lawson, A. C., Billinge, S. J. L. & Cheong, S. W. Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97, 2368–2377 (1993).

  44. 44.

    Akimov, I. A., Sirenko, A. A., Clark, A. M., Hao, J.-H. & Xi, X. X. Electric-field-induced soft-mode hardening in SrTiO3 films. Phys. Rev. Lett. 84, 4625–4628 (2000).

  45. 45.

    Katayama, I. et al. Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses. Phys. Rev. Lett. 108, 097401 (2012).

  46. 46.

    Melnikov, A. A. et al. Coherent phonons in a Bi2Se3 film generated by an intense single-cycle THz pulse. Phys. Rev. B 97, 214304 (2018).

  47. 47.

    Johnson, J. A., Ellsworth, N. R. & Salmans, P. D. High-field THz lattice control via anharmonic vibrational coupling. In Proc. Int. Conf. Ultrafast Phenom. (eds DiMauro, L. et al.) UW4A.11 (Optical Society of America, 2016).

  48. 48.

    Gray, A. X. et al. Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide. Phys. Rev. B 98, 045104 (2018).

  49. 49.

    Fahy, S. & Merlin, R. Reversal of ferroelectric domains by ultrashort optical pulses. Phys. Rev. Lett. 73, 1122 (1994).

  50. 50.

    Qi, T., Shin, Y.-H., Yeh, K.-L., Nelson, K. A. & Rappe, A. M. Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Phys. Rev. Lett. 102, 247603 (2009).

  51. 51.

    Chollet, M. et al. The X-ray pump–probe instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 503–507 (2015).

  52. 52.

    Zhu, D. et al. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source. Rev. Sci. Instrum. 85, 063106 (2014).

  53. 53.

    Hebling, J., Almasi, G., Kozma, I. & Kuhl, J. Velocity matching by pulse front tilting for large area THz-pulse generation. Opt. Express 10, 1161–1166 (2002).

  54. 54.

    Yeh, K. L., Hoffmann, M. C., Hebling, J. & Nelson, K. A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007).

  55. 55.

    Minitti, M. P. et al. Optical laser systems at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 526–531 (2015).

  56. 56.

    Bionta, M. R. et al. Spectral encoding of x-ray/optical relative delay. Opt. Express 19, 21855 (2011).

  57. 57.

    Herrmann, S. et al. CSPAD-140k: A versatile detector for LCLS experiments. Nucl. Instrum. Methods Phys. Res. A 718, 550–553 (2013).

  58. 58.

    Blaj, G. et al. X-ray detectors at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 577–583 (2015).

  59. 59.

    Sirenko, A. A. et al. Soft-mode hardening in SrTiO3 thin films. Nature 404, 373–376 (2000).

  60. 60.

    Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data and Nucl. Data Tables 54, 181–342 (1993).

  61. 61.

    Brown, P. J., Fox, A. G., Maslen, E. N., O’Keefe, M. A. & Willis, B. T. M. in International Tables for Crystallography Vol. C (ed. Prince, E.) (Springer, Dordrecht, 2006).

  62. 62.

    The Atomic Scattering Factor Files (Berkeley Lab, accessed 25 July 2018); http://henke.lbl.gov/optical_constants/asf.html

  63. 63.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

  64. 64.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

  65. 65.

    Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

  66. 66.

    Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

  67. 67.

    Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).

Download references

Acknowledgements

Use of the Linac Coherent Light Source, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-76SF00515. M.K. and M.C.H. are supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award no. 2015-SLAC-100238-Funding. U.S. acknowledges support from the National Center of Competence in Research: Ultrafast Science and Technology (NCCR MUST) of the Swiss National Science Foundation. S.B. acknowledges support from the Knut and Alice Wallenberg Foundation. Work at the University of Fribourg was supported by the Schweizer Nationalfonds (SNF) by grant no. 200020-172611. M.K. and M.C.H. extend thanks to W. Chueh and A. Baclig for annealing the sample and to Z. Wu for assistance with the terahertz experiments. M.F. extends thanks to M. Först for fruitful discussions about modelling the STO system.

Author information

Affiliations

  1. Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

    • M. Kozina
    • , T. van Driel
    • , J. M. Glownia
    • , D. Zhu
    •  & M. C. Hoffmann
  2. Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

    • M. Fechner
  3. Department of Physics, University of Fribourg, Fribourg, Switzerland

    • P. Marsik
    •  & C. Bernhard
  4. Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland

    • M. Radovic
    •  & U. Staub
  5. Department of Physics, Stockholm University, Stockholm, Sweden

    • S. Bonetti

Authors

  1. Search for M. Kozina in:

  2. Search for M. Fechner in:

  3. Search for P. Marsik in:

  4. Search for T. van Driel in:

  5. Search for J. M. Glownia in:

  6. Search for C. Bernhard in:

  7. Search for M. Radovic in:

  8. Search for D. Zhu in:

  9. Search for S. Bonetti in:

  10. Search for U. Staub in:

  11. Search for M. C. Hoffmann in:

Contributions

M.K. and M.C.H. conceived the experiment and performed the final data analysis. M.F. provided DFT calculations and theory support. T.v.D. and S.B. helped with on-line data analysis. M.K., M.C.H., J.M.G. and D.Z. performed the time-resolved X-ray experiment. U.S. provided sample expertise and additional X-ray data. M.R. prepared the sample. P.M. and C.B. carried out the terahertz ellipsometry measurements of the sample. The paper was written by M.K. and M.C.H., with substantial contributions from M.F., U.S. and S.B, as well as with discussions from other authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to M. Kozina.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–4, Supplementary Tables 1–5 and Supplementary References 1–3.

  2. Supplementary Video 1

    Animation of terahertz-driven phonon upconversion in SrTiO3.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41567-018-0408-1