Abstract
Injecting spins from ferromagnetic metals into semiconductors efficiently is a crucial step towards the seamless integration of charge- and spin-information processing in a single device1,2. However, efficient spin injection into semiconductors has remained an elusive challenge even after almost three decades of major scientific effort3,4,5, due to, for example, the extremely low injection efficiencies originating from impedance mismatch1,2,5,6, or technological challenges originating from stability and the costs of the approaches7,8,9,10,11,12. We show here that, by utilizing the strongly out-of-equilibrium nature of subpicosecond spin-current pulses, we can obtain a massive spin transfer even across a bare ferromagnet/semiconductor interface. We demonstrate this by producing ultrashort spin-polarized current pulses in Co and injecting them into monolayer MoS2, a two-dimensional semiconductor. The MoS2 layer acts both as the receiver of the spin injection and as a selective converter of the spin current into a charge current, whose terahertz emission is then measured. Strikingly, we measure a giant spin current, orders of magnitude larger than typical injected spin-current densities using currently available techniques. Our result demonstrates that technologically relevant spin currents do not require the very strong excitations typically associated with femtosecond lasers. Rather, they can be driven by ultralow-intensity laser pulses, finally enabling ultrashort spin-current pulses to be a technologically viable information carrier for terahertz spintronics.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Electric-field control of nonlinear THz spintronic emitters
Nature Communications Open Access 14 July 2022
-
Spintronic terahertz emission with manipulated polarization (STEMP)
Frontiers of Optoelectronics Open Access 21 April 2022
-
Phonon-assisted electronic states modulation of few-layer PdSe2 at terahertz frequencies
npj 2D Materials and Applications Open Access 26 November 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
References
Bercioux, D. & Lucignano, P. Quantum transport in Rashba spin–orbit materials: a review. Rep. Prog. Phys. 78, 106001 (2015).
Tang, J. & Wang, K. L. Electrical spin injection and transport in semiconductor nanowires: challenges, progress and perspectives. Nanoscale 7, 4325–4337 (2015).
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).
Awschalom, D. D. & Flatte, M. E. Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007).
Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790 (2000).
Jansen, R. Silicon spintronics. Nat. Mater. 11, 400–408 (2012).
Appelbaum, I., Huang, B. Q. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).
Jonker, B. T., Kioseoglou, G., Hanbicki, A. T., Li, C. H. & Thompson, P. E. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nat. Phys. 3, 542–546 (2007).
Debray, P. et al. All-electric quantum point contact spin-polarizer. Nat. Nanotechnol. 4, 759–764 (2009).
Chuang, P. et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotechnol. 10, 35–39 (2015).
Wunderlich, J. et al. Spin-injection Hall effect in a planar photovoltaic cell. Nat. Phys. 5, 675–681 (2009).
Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).
Battiato, M., Carva, K. & Oppeneer, P. M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).
Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013).
Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon. 10, 483–488 (2016).
Yang, D. et al. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure. Adv. Opt. Mater. 4, 1944–1949 (2016).
Wu, Y. et al. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Adv. Mater. 29, 1603031 (2017).
Eschenlohr, A. et al. Ultrafast spin transport as key to femtosecond demagnetization. Nat. Mater. 12, 332–336 (2013).
Rudolf, D. et al. Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nat. Commun. 3, 1037 (2012).
Battiato, M. & Held, K. Ultrafast and gigantic spin injection in semiconductors. Phys. Rev. Lett. 116, 196601 (2016).
Zhukov, V., Chulkov, E. & Echenique, P. Lifetimes and inelastic mean free path of low-energy excited electrons in Fe, Ni, Pt, and Au: Ab initio GW+T calculations. Phys. Rev. B 73, 125105 (2006).
Shao, Q. et al. Strong Rashba–Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers. Nano Lett. 16, 7514–7520 (2016).
Tao, J. et al. Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 7, 2497–2503 (2015).
Huisman, T. J. et al. Femtosecond control of electric currents in metallic ferromagnetic heterostructures. Nat. Nanotechnol. 11, 455–458 (2016).
Shen, J. et al. Damping modulated terahertz emission of ferromagnetic films excited by ultrafast laser pulses. Appl. Phys. Lett. 101, 072401 (2012).
Huisman, T. J., Mikhaylovskiy, R. V., Tsukamoto, A., Rasing, T. & Kimel, A. V. Simultaneous measurements of terahertz emission and magneto-optical Kerr effect for resolving ultrafast laser-induced demagnetization dynamics. Phys. Rev. B 92, 104419 (2015).
Huang, Y. et al. Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy. ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
Braun, L. et al. Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3. Nat. Commun. 7, 13259 (2016).
Laman, N., Bieler, M. & van Drielb, H. M. Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation. J. Appl. Phys. 98, 103507 (2005).
Choi, G.-M., Min, B.-C., Lee, K.-J. & Cahill, D. G. Spin current generated by thermally driven ultrafast demagnetization. Nat. Commun. 5, 4334 (2014).
Choi, G.-M., Moon, C.-H., Min, B.-C., Lee, K.-J. & Cahill, D. G. Thermal spin-transfer torque driven by the spin-dependent Seebeck effect in metallic spin-valves. Nat. Phys. 11, 576–581 (2015).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Rojas Sanchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013).
Ando, K. et al. Electrically tunable spin injector free from the impedance mismatch problem. Nat. Mater. 10, 655–659 (2011).
Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).
La-o-vorakiat, C. et al. Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nat. Commun. 6, 7903 (2015).
Acknowledgements
We acknowledge funding from the A*STAR PHAROS Programme on Topological Insulators (SERC Grant No. 152 74 00026) and 2D Materials (SERC Grant No. 152 70 00012 and 152 70 00016), and Singapore Ministry of Education AcRF Tier 1 (MOE2018-T1-001-97) and Tier 2 (MOE2015-T2-2-065, MOE2016-T2-1-054) grants. J.C.W.S. acknowledges the support of the Singapore National Research Foundation under fellowship award NRF-NRFF2016-05. M.B. gratefully acknowledges Nanyang Technological University, NAP-SUG and the Austrian Science Fund (FWF) through Lise Meitner position M1925-N28 for the funding of this research. The work was supported in part by the Center for Integrated Nanotechnologies, a US DOE BES user facility. We acknowledge B. Tang from the National University of Singapore and D. Seng from the Institute of Materials Research and Engineering, A*STAR, for Raman and X-ray photoelectron spectroscopy data.
Author information
Authors and Affiliations
Contributions
E.E.M.C. and H.Y. conceived the experiments. W.Y., Y.W. and M.C. fabricated the heterostructures. L.C. and X.W. carried out the THz measurements and data analysis with the help and guidance of E.E.M.C. and H.Y. M.B., J.C.W.S. and J.X.Z. provided theoretical inputs. W.Y. and S.W. performed and analysed the X-ray photoelectron spectroscopy and Raman measurements. L.C., X.W., J.C.W.S, M.B. and E.E.M.C wrote the manuscript together. All authors discussed the results and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Chapters 1–8, Supplementary Figures 1–7 and Supplementary References 1–12
Rights and permissions
About this article
Cite this article
Cheng, L., Wang, X., Yang, W. et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys. 15, 347–351 (2019). https://doi.org/10.1038/s41567-018-0406-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-018-0406-3
This article is cited by
-
Photocurrent as a multiphysics diagnostic of quantum materials
Nature Reviews Physics (2023)
-
Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions
Frontiers of Physics (2023)
-
Electric-field control of nonlinear THz spintronic emitters
Nature Communications (2022)
-
Threshold voltage modulation in monolayer MoS2 field-effect transistors via selective gallium ion beam irradiation
Science China Materials (2022)
-
Spintronic terahertz emission with manipulated polarization (STEMP)
Frontiers of Optoelectronics (2022)