Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The mechanics of slender structures

Modern physics edged mechanics out into the wilds of engineering. But multidisciplinary interest in pattern formation has moved it back into the mainstream, bringing with it interest from other fields — as this summer’s Solvay Workshop demonstrated.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout


  1. International Solvay Institutes (2018).

  2. Liesegang, R. E. Naturwiss. Wochenschr. 11, 353 (1896).

    Google Scholar 

  3. Bénard, H. C. Les Tourbillons Cellulaires dans une Nappe Liquide Propageant de la Chaleur par Convection, en Régime Permanent. PhD thesis, Collège de France (1901).

  4. Turing, A. M. Bull. Math. Biol. 52, 153–197 (1952).

    Article  Google Scholar 

  5. Belousov, B. P. in Sbornik Referatov po Radiotsionnoi Meditsine 145–147 (Medgiz, Moscow, 1958).

  6. Zhabotinsky, A. M. Biofizika 9, 306–311 (1964).

    Google Scholar 

  7. Nicolis, G. & Prigogine, I. Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations (Wiley, New York, 1977).

    MATH  Google Scholar 

  8. Tanaka, T. et al. Nature 325, 796–798 (1987).

    Article  ADS  Google Scholar 

  9. Milner, S. T., Joanny, J. F. & Pincus, P. Europhys. Lett. 9, 495–500 (1989).

    Article  ADS  Google Scholar 

  10. Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W., George, M. & Whitesides, G. M. Nature 393, 146–149 (1998).

    Article  ADS  Google Scholar 

  11. Cerda, E. & Mahadevan, L. Phys. Rev. Lett. 90, 074302 (2003).

    Article  ADS  Google Scholar 

  12. Reis, P. M. J. Appl. Mech. 82, 111001 (2015).

    Article  ADS  Google Scholar 

  13. Chung, J. Y., Youngblood, J. P. & Stafford, C. M. Soft Matter 3, 1163–1169 (2007).

    Article  ADS  Google Scholar 

  14. Chan, E. P., Smith, E. J., Hayward, R. C. & Crosby, A. J. Adv. Mater. 20, 711–716 (2008).

    Article  Google Scholar 

  15. Koo, W. H. et al. Nat. Photon. 4, 222–226 (2010).

    Article  ADS  Google Scholar 

  16. Kim, J. B. et al. Nat. Photon. 6, 327–332 (2012).

    Article  ADS  Google Scholar 

  17. Rogers, J. A., Someya, T. & Huang, Y. Science 327, 1603–1607 (2010).

    Article  ADS  Google Scholar 

  18. Lacour, S. P., Courtine, G. & Guck, J. Nat. Rev. Mater. 1, 16063 (2016).

    Article  ADS  Google Scholar 

  19. Cross, M. C. & Hohenberg, P. C. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article  ADS  Google Scholar 

  20. Thompson, D. W. On Growth and Form (Cambridge Univ. Press, Cambridge, 1917).

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Pedro M. Reis, Fabian Brau or Pascal Damman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, P.M., Brau, F. & Damman, P. The mechanics of slender structures. Nature Phys 14, 1150–1151 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics