Some gravitational phenomena are difficult or even impossible to observe in real spacetime. Laboratory analogues of black-hole horizons offer new perspectives on field theory effects that might help our understanding of gravitation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Unruh, W. Experimental black hole evaporation. Phys. Rev. Lett. 46, 1351–1353 (1981).
Barceló, C., Liberati, S. & Visser, M. Analogue gravity. Living Rev. Relativ. 14, 3 (2011).
Visser, M. Essential and inessential features of Hawking radiation. Int. J. Mod. Phys. D 12, 649–661 (2003).
Hawking, S. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).
Unruh, W. Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976).
Jacobson, T. Black hole evaporation and ultrashort distances. Phys. Rev. D 44, 1731–1739 (1991).
Unruh, W. Sonic analog of black holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D 51, 2827–2838 (1995).
Cardoso, V. & Pani, P. Tests for the existence of horizons through gravitational wave echoes. Nat. Astron. 1, 586–591 (2017).
Unruh, W. G. Has Hawking radiation been measured? Found. Phys. 44, 532–545 (2014).
Schützhold, R. & Unruh, W. G. Gravity wave analogues of black holes. Phys. Rev. D 66, 044019 (2002).
Rousseaux, G., Mathis, C., Massa, P., Philbin, T. G. & Leonhardt, U. Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect? New J. Phys. 10, 053015 (2008).
Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. Classical aspects of Hawking radiation verified in analogue gravity experiment. In Proc. 9th SIGRAV Graduate School in Contemporary Relativity and Gravitational Physics on Analogue Gravity Phenomenology Vol. 870 (ed. Faccio, D. et al.) 167–180 (Springer, 2013).
Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011).
Michel, F. & Parentani, R. Probing the thermal character of analogue Hawking radiation for shallow water waves? Phys. Rev. D 90, 044033 (2014).
Euvé, L.-P., Michel, F., Parentani, R. & Rousseaux, G. Wave blocking and partial transmission in subcritical flows over an obstacle. Phys. Rev. D 91, 024020 (2015).
Coutant, A. & Weinfurtner, S. The imprint of the analogue Hawking effect in subcritical flows. Phys. Rev. D 94, 064026 (2016).
Euvé, L. P., Michel, F., Parentani, R., Philbin, T. G. & Rousseaux, G. Observation of noise correlated by the Hawking effect in a water tank. Phys. Rev. Lett. 117, 121301 (2016).
Torres, T. et al. Observation of superradiance in a vortex flow. Nat. Phys. 13, 833–836 (2017).
Bekenstein, J. D. & Schiffer, M. The many faces of superradiance. Phys. Rev. D 58, 064014 (1998).
Garay, L., Anglin, J., Cirac, J. & Zoller, P. Sonic analog of gravitational black holes in Bose–Einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000).
Garay, L., Anglin, J., Cirac, J. & Zoller, P. Sonic black holes in dilute Bose–Einstein condensates. Phys. Rev. A 63, 023611 (2001).
Barceló, C., Liberati, S. & Visser, M. Towards the observation of Hawking radiation in Bose–Einstein condensates. Int. J. Mod. Phys. A 18, 3735 (2003).
Lahav, O. et al. Realization of a sonic black hole analog in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010).
Shammass, I., Rinott, S., Berkovitz, A., Schley, R. & Steinhauer, J. Phonon dispersion relation of an atomic Bose–Einstein condensate. Phys. Rev. Lett. 109, 195301 (2012).
Schley, R. et al. Planck distribution of phonons in a Bose–Einstein condensate. Phys. Rev. Lett. 111, 055301 (2013).
Steinhauer, J. Observation of self-amplifying Hawking radiation in an analog black hole laser. Nat. Phys. 10, 864 (2014).
Corley, S. & Jacobson, T. Black hole lasers. Phys. Rev. D 59, 1–12 (1999).
Tettamanti, M., Cacciatori, S. L., Parola, A. & Carusotto, I. Numerical study of a recent black-hole lasing experiment. EPL 114, 60011 (2016).
Wang, Y.-H., Jacobson, T., Edwards, M. & Clark, C. W. Mechanism of stimulated Hawking radiation in a laboratory Bose–Einstein condensate. Phys. Rev. A 96, 023616 (2017).
Steinhauer, J. & de Nova, J. R. M. Self-amplifying Hawking radiation and its background: a numerical study. Phys. Rev. A 95, 033604 (2017).
Steinhauer, J. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 12, 959 (2016).
Balbinot, R., Fabbri, A., Fagnocchi, S., Recati, A. & Carusotto, I. Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes. Phys. Rev. A 78, 021603 (2008).
Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R. & Fabbri, A. Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates. New J. Phys. 10, 103001 (2008).
Busch, X. & Parentani, R. Quantum entanglement in analogue Hawking radiation: When is the final state non-separable? Phys. Rev. D 89, 105024 (2014).
Michel, F., Coupechoux, J.-F. & Parentani, R. Phonon spectrum and correlations in a transonic flow of an atomic Bose gas. Phys. Rev. D 94, 084027 (2016).
Finke, A., Jain, P. & Weinfurtner, S. On the observation of nonclassical excitations in Bose–Einstein condensates. New J. Phys. 18, 113017 (2016).
Leonhardt, U. Questioning the recent observation of quantum Hawking radiation. Ann. Phys. 530, 1700114 (2018).
Steinhauer, J. Response to version 2 of the note concerning the observation of quantum Hawking radiation and its entanglement in an analogue black hole. Preprint at https://arxiv.org/abs/1609.09017 (2016).
Philbin, T. G. et al. Fiber-optical analogue of the event horizon. Science 319, 1367–1370 (2008).
Belgiorno, F., Cacciatori, S. L., Ortenzi, G., Sala, V. G. & Faccio, D. Quantum radiation from superluminal refractive-index perturbations. Phys. Rev. Lett. 104, 140403 (2010).
Rubino, E. et al. Experimental evidence of analogue Hawking radiation from ultrashort laser pulse filaments. New J. Phys. 13, 085005 (2011).
Schützhold, R. & Unruh, W. G. Comment on “Hawking radiation from ultrashort laser pulse filaments”. Phys. Rev. Lett. 107, 149401 (2011).
Belgiorno, F. et al. Belgiorno et al. reply. Phys. Rev. Lett. 107, 149402 (2011).
Unruh, W. G. & Schützhold, R. Hawking radiation from ‘phase horizons’ in laser filaments? Phys. Rev. D 86, 064006 (2012).
Liberati, S., Prain, A. & Visser, M. Quantum vacuum radiation in optical glass. Phys. Rev. D 85, 084014 (2012).
Finazzi, S. & Carusotto, I. Spontaneous quantum emission from analog white holes in a nonlinear optical medium. Phys. Rev. A 89, 053807 (2014).
Rubino, E. et al. Negative-frequency resonant radiation. Phys. Rev. Lett. 108, 253901 (2012).
Marino, F. Acoustic black holes in a two-dimensional ‘photon-fluid’. Phys. Rev. A 78, 063804 (2008).
Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299 (2013).
Carusotto, I. & Ciuti, C. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004).
Nguyen, H. S. et al. Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons. Phys. Rev. Lett. 114, 036402 (2015).
Vocke, D. et al. Rotating black hole geometries in a two-dimensional photon superfluid. Optica 5, 1099–1103 (2018).
Macher, J. & Parentani, R. Black/white hole radiation from dispersive theories. Phys. Rev. D 79, 124008 (2009).
Parentani, R. Constructing QFT’s wherein Lorentz invariance is broken by dissipative effects in the UV. PoS QG-Ph:031 (2007).
Robertson, S. & Parentani, R. Hawking radiation in the presence of high-momentum dissipation. Phys. Rev. D 92, 044043 (2015).
Jacobson, T. Lorentz violation and Hawking radiation. In Proc. 2nd Meeting CPT and Lorentz Symmetry 316–320 (World Scientific, Singapore, 2002).
Finazzi, S. & Parentani, R. Black-hole lasers in Bose–Einstein condensates. New J. Phys. 12, 095015 (2010).
Barbado, L. C., Barceló, C., Garay, L. J. & Jannes, G. The trans-Planckian problem as a guiding principle. J. High Energy Phys. 2011, 112 (2011).
Barceló, C., Carballo-Rubio, R. & Garay, L. J. Where does the physics of extreme gravitational collapse reside? Universe 2, 7 (2016).
Blas, D. & Sibiryakov, S. Hořava gravity versus thermodynamics: the black hole case. Phys. Rev. D 84, 124043 (2011).
Acknowledgements
I thank R. Carballo-Rubio, L. Garay and G. Jannes for comments and suggestions. Financial support was provided by the Spanish MINECO through projects FIS2014-54800-C2-1 and FIS2017-86497-C2-1 (with FEDER contribution), and by the Junta de Andalucía through the project FQM219.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Barceló, C. Analogue black-hole horizons. Nat. Phys. 15, 210–213 (2019). https://doi.org/10.1038/s41567-018-0367-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-018-0367-6
This article is cited by
-
Sonic Black Holes: A Perspective
Resonance (2022)
-
Visco-elastic cosmology for a sparkling universe?
General Relativity and Gravitation (2020)