The Goldstone mode and resonances in the fluid interfacial region

Abstract

The development of a molecular theory of inhomogeneous fluids and, in particular, of the liquid–gas interface has received enormous interest in recent years; however, long-standing attempts to extend the concept of surface tension in mesoscopic approaches by making it scale dependent, although apparently plausible, have failed to connect with simulation and experimental studies of the interface that probe the detailed properties of density correlations. Here, we show that a fully microscopic theory of correlations in the interfacial region can be developed that overcomes many of the problems associated with simpler mesoscopic ideas. This theory originates from recognizing that the correlation function displays, in addition to a Goldstone mode, an unexpected hierarchy of resonances that constrain severely its structural properties. Indeed, this approach allows us to identify new classes of fully integrable models for which, surprisingly, the tension, density profile and correlation function can all be determined analytically, revealing the microscopic structure of correlations in all generalized van der Waals theories.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison of σl(q) and σg(q) with σHD(q).
Fig. 2: Results for model potentials whose S(z;q) displays a single resonance at \(\xi q = \sqrt {n^2 - 1}\).
Fig. 3: G(z, z′;q) for the double-cubic potential for different wave vectors q and fixed κz′ = 3.
Fig. 4: Sullivan model results for S(0;q) using the Carnahan–Starling equation of state for hard spheres.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Zittartz, J. Microscopic approach to interfacial structure in Ising-like ferromagnets. Phys. Rev. 154, 529–534 (1967).

    ADS  Article  Google Scholar 

  2. 2.

    Wertheim, M. S. Correlations in the liquid–vapor interface. J. Chem. Phys. 65, 2377–2381 (1976).

    ADS  Article  Google Scholar 

  3. 3.

    Weeks, J. D. Structure and thermodynamics of the liquid–vapor interface.J. Chem. Phys. 67, 3106–3121 (1977).

    ADS  Article  Google Scholar 

  4. 4.

    Buff, F. P., Lovett, R. A. & Stillinger, F. H. Interfacial density profile for fluids in the critical region. Phys. Rev. Lett. 15, 621–623 (1965).

    ADS  Article  Google Scholar 

  5. 5.

    Aarts, D. G. A. L., Schmidt, M. & Lekkerkerker, H. N. W. Direct visual observation of thermal capillary waves. Science 304, 847–850 (2004).

    ADS  Article  Google Scholar 

  6. 6.

    Romero-Rochín, V., Varea, C. & Robledo, A. Microscopic expressions for interfacial bending constants and spontaneous curvature. Phys. Rev. A 44, 8417–8420 (1991).

    ADS  Article  Google Scholar 

  7. 7.

    Napiórkowski, M. & Dietrich, S. Structure of the effective Hamiltonian for liquid–vapor interfaces. Phys. Rev. E 47, 1836–1849 (1993).

    ADS  Article  Google Scholar 

  8. 8.

    Parry, A. O. & Boulter, C. J. Fluctuation theory for the wavevector expansion of the excess grand potential of a liquid–vapor interface and the theory of interfacial fluctuations. J. Phys. Condens. Matter 6, 7199–7206 (1994).

    ADS  Article  Google Scholar 

  9. 9.

    Robledo, A. & Varea, C. Interfacial width and shape fluctuations and extensions of the Gaussian model of capillary waves. J. Stat. Phys. 89, 273–282 (1997).

    ADS  Article  Google Scholar 

  10. 10.

    Mecke, K. R. & Dietrich, S. Effective Hamiltonian for liquid–vapor interfaces. Phys. Rev. E 59, 6766–6784 (1999).

    ADS  Article  Google Scholar 

  11. 11.

    Fradin, C. et al. Reduction in the surface energy of liquid interfaces at short length scales. Nature 403, 871–874 (2000).

    ADS  Article  Google Scholar 

  12. 12.

    Blokhuis, E. M., Kuipers, J. & Vink, R. L. C. Description of the fluctuating colloid–polymer interface. Phys. Rev. Lett. 101, 086101 (2008).

    ADS  Article  Google Scholar 

  13. 13.

    Blokhuis, E. M. On the spectrum of fluctuations of a liquid surface: from the molecular scale to the macroscopic scale. J. Chem. Phys. 130, 014706 (2009).

    ADS  Article  Google Scholar 

  14. 14.

    Parry, A. O., Rascón, C., Willis, G. & Evans, R. Pair correlation functions and the wavevector-dependent surface tension in a simple density functional treatment of the liquid–vapour interface. J. Phys. Condens. Matter 26, 355008 (2014).

    Article  Google Scholar 

  15. 15.

    Höfling, F. & Dietrich, S. Enhanced wavelength-dependent surface tension of liquid–vapor interfaces. Europhys. Lett. 109, 46002 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Chacón, E. & Tarazona, P. Capillary wave Hamiltonian for the Landau–Ginzburg–Wilson density functional. J. Phys. Condens. Matter 28, 244014 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Hernández-Muñoz, J., Chacón, E. & Tarazona, P. Capillary waves and the decay of density correlations at liquid surfaces. Phys. Rev. E 94, 062802 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Parry, A. O., Rascón, C. & Evans, R. The local structure factor near an interface; beyond extended capillary-wave models. J. Phys. Condens. Matter 28, 244013 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Macdowell, L. G. Capillary wave theory of adsorbed liquid films and the structure of the liquid–vapor interface. Phys. Rev. E 96, 022801 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Hernández-Muñoz, J., Chacón, E. & Tarazona, P. Capillary waves as eigenmodes of the density correlation at liquid surfaces. J. Chem. Phys. 148, 084702 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973).

    Article  Google Scholar 

  22. 22.

    Evans, R., Henderson, J. R., Hoyle, D. C., Parry, A. O. & Sabeur, Z. A. Asymptotic decay of liquid structure: oscillatory liquid–vapour density profiles and the Fisher–Widom line. Mol. Phys. 80, 755–775 (1993).

    ADS  Article  Google Scholar 

  23. 23.

    Evans, R. The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143–200 (1979).

    ADS  Article  Google Scholar 

  24. 24.

    Rowlinson, J. S. & Widom, B. Molecular Theory of Capillarity (Clarendon, Oxford, 1982).

  25. 25.

    Fernández, E. M., Chacón, E., Tarazona, P., Parry, A. O. & Rascón, C. Intrinsic fluid interfaces and nonlocality. Phys. Rev. Lett. 111, 096104 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Van Campen, N. G. Condensation of a classical gas with long-range attraction. Phys. Rev. 135, 362–369 (1964).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Percus, J. K. Current problems in statistical mechanics. Trans. NY Acad. Sci. 26, 1062–1071 (1964).

    MathSciNet  Article  Google Scholar 

  28. 28.

    Sullivan, D. E. Van der Waals model of adsorption. Phys. Rev. B 20, 3991–4000 (1979).

    ADS  Article  Google Scholar 

  29. 29.

    Sullivan, D. E. Surface tension and contact angle of a liquid–solid interface. J. Chem. Phys. 74, 2604–2615 (1981).

    ADS  Article  Google Scholar 

  30. 30.

    Pang, L. J., Landau, D. P. & Binder, K. Simulation evidence for nonlocal interface models: two correlation lengths describe complete wetting. Phys. Rev. Lett. 106, 236102 (2011).

    ADS  Article  Google Scholar 

  31. 31.

    Rosenfeld, Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63, 980–983 (1989).

    ADS  Article  Google Scholar 

  32. 32.

    Evans, R. & Henderson, J. R. Pair correlation function decay in models of simple fluids that contain dispersion interactions. J. Phys. Condens. Matter 21, 474220 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Höfling for providing his simulation results and for discussions. A.O.P. acknowledges the EPSRC, UK, for grant EP/L020564/1 (Multiscale Analysis of Complex Interfacial Phenomena). C.R. acknowledges the support of grant FIS2015-66523-P (MINECO/FEDER, UE).

Author information

Affiliations

Authors

Contributions

A.O.P. conceived the problem and subsequent joint theoretical development. C.R. performed joint theoretical development and numerical computations.

Corresponding author

Correspondence to C. Rascón.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

1 Table, 10 References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parry, A.O., Rascón, C. The Goldstone mode and resonances in the fluid interfacial region. Nat. Phys. 15, 287–292 (2019). https://doi.org/10.1038/s41567-018-0361-z

Download citation

Further reading