Letter | Published:

Creation of quark–gluon plasma droplets with three distinct geometries

Nature Physicsvolume 15pages214220 (2019) | Download Citation

Abstract

Experimental studies of the collisions of heavy nuclei at relativistic energies have established the properties of the quark–gluon plasma (QGP), a state of hot, dense nuclear matter in which quarks and gluons are not bound into hadrons1,2,3,4. In this state, matter behaves as a nearly inviscid fluid5 that efficiently translates initial spatial anisotropies into correlated momentum anisotropies among the particles produced, creating a common velocity field pattern known as collective flow. In recent years, comparable momentum anisotropies have been measured in small-system proton–proton (p+p) and proton–nucleus (p+A) collisions, despite expectations that the volume and lifetime of the medium produced would be too small to form a QGP. Here we report on the observation of elliptic and triangular flow patterns of charged particles produced in proton–gold (p+Au), deuteron–gold (d+Au) and helium–gold (3He+Au) collisions at a nucleon–nucleon centre-of-mass energy \(\sqrt {s_{{\mathrm{NN}}}}\) = 200 GeV. The unique combination of three distinct initial geometries and two flow patterns provides unprecedented model discrimination. Hydrodynamical models, which include the formation of a short-lived QGP droplet, provide the best simultaneous description of these measurements.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All raw data for this study were collected using the PHENIX detector at Brookhaven National Laboratory. Data tables for the results reported in this paper and other findings of this study are publicly available on the PHENIX website (https://www.phenix.bnl.gov/phenix/WWW/info/data/ppg216_data.html) or from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Arsene, I. et al. Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1–27 (2005).

  2. 2.

    Back, B. B. et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005).

  3. 3.

    Adams, J. et al. Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005).

  4. 4.

    Adcox, K. et al. Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005).

  5. 5.

    Heinz, U. & Snellings, R. Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 63, 123–151 (2013).

  6. 6.

    Khachatryan, V. et al. Observation of long-range near-side angular correlations in proton-proton collisions at the LHC. J. High Energy Phys. 09, 091 (2010).

  7. 7.

    Chatrchyan, S. et al. Observation of long-range near-side angular correlations in proton-lead collisions at the LHC. Phys. Lett. B 718, 795–814 (2013).

  8. 8.

    Abelev, B. et al. Long-range angular correlations on the near and away side in p-Pb collisions at = 5.02 TeV. Phys. Lett. B 719, 29–41 (2013).

  9. 9.

    Aad, G. et al. Observation of associated near-side and away-side long-range correlations in = 5.02 TeV proton-lead collisions with the ATLAS detector. Phys. Rev. Lett. 110, 182302 (2013).

  10. 10.

    Adare, A. et al. Quadrupole anisotropy in dihadron azimuthal correlations in central d + Au collisions at = 200 GeV. Phys. Rev. Lett. 111, 212301 (2013).

  11. 11.

    Adare, A. et al. Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central d + Au collisions at = 200 GeV. Phys. Rev. Lett. 114, 192301 (2015).

  12. 12.

    Dusling, K., Li, W. & Schenke, B. Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions. Int. J. Mod. Phys. E 25, 1630002 (2016).

  13. 13.

    Nagle, J. L. & Zajc, W. A. Small system collectivity in relativistic hadron and nuclear collisions. Preprint at https://arXiv.org/abs/1801.03477v2 (2018).

  14. 14.

    Nagle, J. L. et al. Exploiting intrinsic triangular geometry in relativistic 3He + Au collisions to disentangle medium properties. Phys. Rev. Lett. 113, 112301 (2014).

  15. 15.

    Miller, M. L., Reygers, K., Sanders, S. J. & Steinberg, P. Glauber modeling in high energy nuclear collisions. Annu. Rev. Nucl. Part. Sci. 57, 205–243 (2007).

  16. 16.

    Alver, B. & Roland, G. Collision geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905 (2010); erratum 82, 039903 (2010).

  17. 17.

    Gale, C., Jeon, S. & Schenke, B. Hydrodynamic modeling of heavy-ion collisions. Int. J. Mod. Phys. A 28, 1340011 (2013).

  18. 18.

    Habich, M., Nagle, J. L. & Romatschke, P. Particle spectra and HBT radii for simulated central nuclear collisions of C + C, Al + Al, Cu + Cu, Au + Au, and Pb + Pb from = 62.4−2760 GeV. Eur. Phys. J. C 75, 15 (2015).

  19. 19.

    Dusling, K. & Venugopalan, R. Azimuthal collimation of long range rapidity correlations by strong color fields in high multiplicity hadron-hadron collisions. Phys. Rev. Lett. 108, 262001 (2012).

  20. 20.

    Dumitru, A. et al. The ridge in proton-proton collisions at the LHC. Phys. Lett. B 697, 21–25 (2011).

  21. 21.

    Dumitru, A. & Giannini, A. V. Initial state angular asymmetries in high energy p+A collisions: spontaneous breaking of rotational symmetry by a color electric field and C-odd fluctuations. Nucl. Phys. A 933, 212–228 (2015).

  22. 22.

    Lappi, T., Schenke, B., Schlichting, S. & Venugopalan, R. Tracing the origin of azimuthal gluon correlations in the color glass condensate. J. High Energy Phys. 01, 061 (2016).

  23. 23.

    Aidala, C. et al. Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity p + Au collisions at = 200 GeV. Phys. Rev. C 95, 034910 (2017).

  24. 24.

    Aidala, C. et al. Measurements of azimuthal anisotropy and charged-particle multiplicity in d + Au collisions at = 200, 62.4, 39, and 19.6 GeV. Phys. Rev. C 96, 064905 (2017).

  25. 25.

    Adare, A. et al. Measurements of elliptic and triangular flow in high-multiplicity 3He + Au collisions at = 200 GeV. Phys. Rev. Lett. 115, 142301 (2015).

  26. 26.

    Voloshin, S. & Zhang, Y. Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions. Z. Phys. C 70, 665–672 (1996).

  27. 27.

    Ollitrault, J.-Y., Poskanzer, A. M. & Voloshin, S. A. Effect of nonflow and flow fluctuations on elliptic flow methods. Nucl. Phys. A 830, 279c–282c (2009).

  28. 28.

    Adare, A. et al. Centrality categorization for R p(d)+A in high-energy collisions. Phys. Rev. C 90, 034902 (2014).

  29. 29.

    Shen, C., Paquet, J.-F., Denicol, G. S., Jeon, S. & Gale, C. Collectivity and electromagnetic radiation in small systems. Phys. Rev. C 95, 014906 (2017).

  30. 30.

    Kovtun, P., Son, D. T. & Starinets, A. O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005).

  31. 31.

    Adare, A. et al. Quantitative constraints on the opacity of hot partonic matter from semi-inclusive single high transverse momentum pion suppression in Au + Au collisions at = 200 GeV. Phys. Rev. C 77, 064907 (2008).

  32. 32.

    Welsh, K., Singer, J. & Heinz, U. W. Initial state fluctuations in collisions between light and heavy ions. Phys. Rev. C 94, 024919 (2016).

  33. 33.

    Weller, R. D. & Romatschke, P. One fluid to rule them all: viscous hydrodynamic description of event-by-event central p + p, p + Pb and Pb + Pb collisions at = 5.02 TeV. Phys. Lett. B 774, 351–356 (2017).

  34. 34.

    Lin, Z.-W., Ko, C. M., Li, B.-A., Zhang, B. & Pal, S. A multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005).

  35. 35.

    Orjuela Koop, J. D., Adare, A., McGlinchey, D. & Nagle, J. L. Azimuthal anisotropy relative to the participant plane from a multiphase transport model in central p + Au, d + Au, and 3He + Au collisions at = 200 GeV. Phys. Rev. C 92, 054903 (2015).

  36. 36.

    Mace, M., Skokov, V. V., Tribedy, P. & Venugopalan, R. Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the color glass condensate. Phys. Rev. Lett. 121, 052301 (2018).

  37. 37.

    Nagle, J. L. & Zajc, W. A. Assessing saturation physics explanations of collectivity in small collision systems with the IP-Jazma model. Preprint at https://arXiv.org/abs/1808.01276v1 (2018).

  38. 38.

    Adare, A. et al. Pseudorapidity dependence of particle production and elliptic flow in asymmetric nuclear collisions of p+Al, p+Au, d+Au, and 3He+Au at \(\sqrt {s_{_{NN}}}\) = 200 GeV. Preprint at https://arXiv.org/abs/1807.11928v1 (2018).

  39. 39.

    Adcox, K. et al. PHENIX central arm tracking detectors. Nucl. Instrum. Meth. A 499, 489–507 (2003).

  40. 40.

    Aidala, C. et al. The PHENIX forward silicon vertex detector. Nucl. Instrum. Meth. A 755, 44–61 (2014).

  41. 41.

    Adcox, K. et al. PHENIX detector overview. Nucl. Instrum. Meth. A 499, 469–479 (2003).

  42. 42.

    Poskanzer, A. M. & Voloshin, S. A. Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671–1678 (1998).

Download references

Acknowledgements

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientfico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), NKFIH, EFOP, the New National Excellence Program (ÚNKP) and the J. Bolyai Research Scholarships (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, and the US–Israel Binational Science Foundation.

Author information

Author notes

  1. PHENIX Spokesperson: akiba@rcf.rhic.bnl.gov: Y. Akiba.

  2. Deceased: J. B. Choi.

Affiliations

  1. Department of Physics, University of Michigan, Ann Arbor, MI, USA

    • C. Aidala
    • , V. Andrieux
    • , C. Ayuso
    • , N. A. Lewis
    • , J. D. Osborn
    •  & M. J. Skoby
  2. RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, Japan

    • Y. Akiba
    • , H. Asano
    • , A. Enokizono
    • , H. En’yo
    • , Y. Goto
    • , T. Hachiya
    • , S. Miyasaka
    • , S. Mizuno
    • , T. Murakami
    • , J. Murata
    • , I. Nakagawa
    • , H. Nakagomi
    • , K. Nakano
    • , S. Park
    • , R. Seidl
    • , T.-A. Shibata
    • , T. Sumita
    •  & Y. Watanabe
  3. RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY, USA

    • Y. Akiba
    • , S. Bathe
    • , M. Connors
    • , A. Deshpande
    • , Y. Goto
    • , T. Hachiya
    • , G. Mitsuka
    • , I. Nakagawa
    • , R. Nouicer
    • , R. Seidl
    • , K. Tanida
    • , X. R. Wang
    • , Y. Watanabe
    •  & Y. L. Yamaguchi
  4. Department of Physics and Astronomy, Howard University, Washington, DC, USA

    • M. Alfred
  5. KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan

    • K. Aoki
    •  & K. Ozawa
  6. Iowa State University, Ames, IA, USA

    • N. Apadula
    • , J. C. Hill
    • , N. Hotvedt
    • , J. G. Lajoie
    • , A. Lebedev
    • , S. H. Lee
    • , C. A. Ogilvie
    • , M. Patel
    • , J. Perry
    • , T. Rinn
    • , M. Rosati
    • , J. Runchey
    • , A. Sen
    • , M. Shimomura
    •  & A. Timilsina
  7. Kyoto University, Kyoto, Japan

    • H. Asano
    •  & T. Murakami
  8. Physics Department, Brookhaven National Laboratory, Upton, NY, USA

    • B. Azmoun
    • , A. Bazilevsky
    • , M. Chiu
    • , G. David
    • , E. J. Desmond
    • , A. Franz
    • , J. S. Haggerty
    • , J. Huang
    • , B. M. Johnson
    • , E. Kistenev
    • , D. Lynch
    • , E. Mannel
    • , J. T. Mitchell
    • , D. P. Morrison
    • , R. Nouicer
    • , E. O’Brien
    • , D. V. Perepelitsa
    • , R. Petti
    • , M. Phipps
    • , C. Pinkenburg
    • , R. P. Pisani
    • , M. L. Purschke
    • , T. Sakaguchi
    • , I. V. Sourikova
    • , S. P. Stoll
    • , A. Sukhanov
    • , M. J. Tannenbaum
    •  & C. L. Woody
  9. IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

    • V. Babintsev
    • , V. Bumazhnov
    • , A. Denisov
    • , A. Durum
    • , I. Shein
    •  & A. Yanovich
  10. ELTE, Eötvös Loránd University, Budapest, Hungary

    • A. Bagoly
    • , M. Csanád
    • , D. Kincses
    • , B. Kurgyis
    • , S. Lökös
    •  & M. I. Nagy
  11. Department of Physics, University of Massachusetts, Amherst, MA, USA

    • N. S. Bandara
    •  & D. Kawall
  12. University of California-Riverside, Riverside, CA, USA

    • K. N. Barish
    • , M. Beaumier
    • , J. Bryslawskyj
    • , R. S. Hollis
    • , A. Iordanova
    • , D. Kapukchyan
    • , C. Kim
    • , M. Mendoza
    • , S. D. Rolnick
    • , K. Sedgwick
    • , R. Seto
    •  & L. Zou
  13. Baruch College, City University of New York, New York, NY, USA

    • S. Bathe
    • , J. Bryslawskyj
    • , D. Richford
    • , Z. Rowan
    •  & Z. Wang
  14. University of Colorado, Boulder, CO, USA

    • R. Belmont
    • , K. Hill
    • , T. Koblesky
    • , D. McGlinchey
    • , J. L. Nagle
    • , J. D. Orjuela Koop
    • , D. V. Perepelitsa
    • , S. Vazquez-Carson
    •  & P. Yin
  15. Saint Petersburg State Polytechnic University, St. Petersburg, Russia

    • A. Berdnikov
    • , Y. Berdnikov
    • , D. Kotov
    • , P. V. Radzevich
    • , Y. Riabov
    • , A. S. Safonov
    •  & S. Zharko
  16. National Research Center ‘Kurchatov Institute’, Moscow, Russia

    • D. S. Blau
    • , S. L. Fokin
    • , A. V. Kazantsev
    • , V. I. Manko
    • , A. S. Nyanin
    • , D. Yu. Peressounko
    •  & I. E. Yushmanov
  17. National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, Russia

    • D. S. Blau
    • , V. Riabov
    • , V. Samsonov
    •  & A. Taranenko
  18. Los Alamos National Laboratory, Los Alamos, NM, USA

    • M. Boer
    • , M. L. Brooks
    • , J. M. Durham
    • , X. Jiang
    • , M. J. Leitch
    • , X. Li
    • , S. H. Lim
    • , M. X. Liu
    • , M. McCumber
    • , P. L. McGaughey
    • , D. McGlinchey
    • , C. L. Silva
    • , M. Snowball
    • , W. E. Sondheim
    •  & H. W. van Hecke
  19. New Mexico State University, Las Cruces, NM, USA

    • J. S. Bok
    • , V. Papavassiliou
    • , S. F. Pate
    • , G. D. N. Perera
    • , X. R. Wang
    • , C. Xu
    •  & H. Yu
  20. Georgia State University, Atlanta, GA, USA

    • C. Butler
    • , M. Connors
    • , T. Elder
    • , H. Guragain
    • , T. O. S. Haseler
    • , X. He
    • , A. Hodges
    • , M. Jezghani
    • , B. M. Johnson
    • , M. Sarsour
    • , S. Syed
    • , R. Tieulent
    • , C. P. Wong
    •  & L. Xue
  21. Columbia University, New York, NY, USA

    • S. Campbell
    • , C. Y. Chi
    •  & W. A. Zajc
  22. Nevis Laboratories, Irvington, NY, USA

    • S. Campbell
  23. Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, NY, USA

    • V. Canoa Roman
    • , R. Cervantes
    • , N. Cronin
    • , G. David
    • , K. Dehmelt
    • , A. Deshpande
    • , A. Dion
    • , D. Dixit
    • , A. Drees
    • , W. Fan
    • , N. Feege
    • , C. Gal
    • , P. Garg
    • , H. Ge
    • , J. Hanks
    • , T. K. Hemmick
    • , B. V. Jacak
    • , Z. Ji
    • , V. Jorjadze
    • , S. Karthas
    • , V. Khachatryan
    • , P. Kline
    • , S. H. Lee
    • , Y. H. Leung
    • , D. E. Mihalik
    • , N. Novitzky
    • , S. Park
    • , C. E. PerezLara
    • , D. Sharma
    • , J. Sun
    • , S. Yalcin
    •  & Y. L. Yamaguchi
  24. University of Illinois at Urbana-Champaign, Urbana, IL, USA

    • I. J. Choi
    • , F. Giordano
    • , M. Grosse Perdekamp
    • , D. S. Jumper
    • , V.-R. Loggins
    • , C. McKinney
    • , P. Montuenga
    • , M. Phipps
    •  & A. Sickles
  25. Chonbuk National University, Jeonju, Korea

    • J. B. Choi
    •  & E.-J. Kim
  26. Weizmann Institute, Rehovot, Israel

    • Z. Citron
    • , M. Dumancic
    • , A. Milov
    • , S. Tarafdar
    •  & I. Tserruya
  27. Eszterházy Károly University, Károly Róbert Campus, Gyöngyös, Hungary

    • T. Csörgő
    • , S. Lökös
    •  & T. Novák
  28. Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI), Budapest, Hungary

    • T. Csörgő
    • , T. Novák
    •  & J. Sziklai
  29. Department of Physics and Astronomy, Ohio University, Athens, OH, USA

    • T. W. Danley
    • , J. E. Frantz
    •  & A. Pun
  30. Abilene Christian University, Abilene, TX, USA

    • M. S. Daugherity
    • , H. F. Hamilton
    • , D. Isenhower
    • , C. L. Towell
    •  & R. S. Towell
  31. University of New Mexico, Albuquerque, NM, USA

    • K. DeBlasio
    • , D. E. Fields
    •  & G. J. Ottino
  32. Peking University, Beijing, People’s Republic of China

    • L. D. Liu
    •  & H. Yu
  33. Yonsei University, IPAP, Seoul, Korea

    • J. H. Do
    • , J. H. Kang
    • , Y. Kwon
    • , S. Lee
    • , S. H. Lim
    •  & T. Moon
  34. Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY, USA

    • K. A. Drees
    • , Y. I. Makdisi
    •  & A. Zelenski
  35. Physics Department, Rikkyo University, Toshima, Tokyo, Japan

    • A. Enokizono
    • , K. Kurita
    • , H. Masuda
    • , J. Murata
    •  & T. Nagashima
  36. Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki, Japan

    • S. Esumi
    • , Y. Fukuda
    • , M. Inaba
    • , S. Kudo
    • , S. Mizuno
    • , H. Nakagomi
    • , T. Niida
    • , K. Ozawa
    • , K. Sato
    • , T. Shioya
    • , T. Todoroki
    •  & H. Yamamoto
  37. Muhlenberg College, Allentown, PA, USA

    • B. Fadem
    •  & E. O. Lallow
  38. Charles University, Prague, Czech Republic

    • M. Finger
    • , M. Finger Jr
    •  & M. Slunečka
  39. Florida State University, Tallahassee, FL, USA

    • A. D. Frawley
    • , J. Klatsky
    •  & K. L. Smith
  40. Czech Technical University, Prague 6, Czech Republic

    • P. Gallus
    • , R. Novotny
    • , M. Tomášek
    • , M. Virius
    •  & V. Vrba
  41. Department of Physics, Banaras Hindu University, Varanasi, India

    • P. Garg
    • , B. K. Singh
    • , C. P. Singh
    •  & V. Singh
  42. Department of Physics, Augustana University, Sioux Falls, SD, USA

    • N. Grau
  43. Vanderbilt University, Nashville, TN, USA

    • S. V. Greene
    • , S. Huang
    • , S. I. Morrow
    • , W. Peng
    • , B. Schaefer
    • , S. Tarafdar
    • , J. Velkovska
    •  & Q. Xu
  44. Center for Nuclear Study, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo, Japan

    • T. Gunji
    • , H. Hamagaki
    •  & Y. S. Watanabe
  45. Ewha Womans University, Seoul, Korea

    • K. I. Hahn
    •  & S. Y. Han
  46. Advanced Science Research Center, Japan Atomic Energy Agency, Naka-gun, Ibaraki-ken, Japan

    • S. Hasegawa
    • , K. Imai
    • , H. Sako
    • , S. Sato
    •  & K. Tanida
  47. Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan

    • K. Homma
    • , T. Hoshino
    • , K. Nagashima
    • , K. Shigaki
    • , T. Sugitate
    •  & Y. Ueda
  48. Korea University, Seoul, Korea

    • B. Hong
    • , C. Kim
    • , M. H. Kim
    •  & J. H. Yoo
  49. Debrecen University, Debrecen, Hungary

    • J. Imrek
    • , K. Lovasz
    • , T. Majoros
    • , Z. Sun
    • , G. Tarnai
    •  & B. Ujvari
  50. Nara Women’s University, Nara, Japan

    • Y. Ito
    • , M. Shimomura
    •  & A. Takeda
  51. PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, Russia

    • D. Ivanishchev
    • , A. Khanzadeev
    • , D. Kotov
    • , M. Malaev
    • , V. Riabov
    • , Y. Riabov
    •  & V. Samsonov
  52. IPN-Orsay, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

    • D. Jouan
  53. Helsinki Institute of Physics and University of Jyväskylä, Jyväskylä, Finland

    • D. J. Kim
  54. Department of Physics and Astronomy, Seoul National University, Seoul, Korea

    • M. Kim
    • , J. S. Park
    • , S. Park
    • , K. Tanida
    •  & I. Yoon
  55. Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia

    • M. Makek
    •  & N. Vukman
  56. University of Maryland, College Park, MD, USA

    • A. C. Mignerey
    •  & A. Sexton
  57. Bhabha Atomic Research Centre, Bombay, India

    • D. K. Mishra
    •  & P. Shukla
  58. Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo, Japan

    • S. Miyasaka
    • , K. Nagai
    • , K. Nakano
    •  & T.-A. Shibata
  59. University of Tennessee, Knoxville, TN, USA

    • C. Nattrass
    • , K. F. Read
    • , B. K. Schmoll
    • , A. Sen
    •  & S. P. Sorensen
  60. Department of Physics, Lund University, Lund, Sweden

    • A. Oskarsson
    •  & D. Silvermyr
  61. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

    • V. Pantuev
  62. Oak Ridge National Laboratory, Oak Ridge, TN, USA

    • K. F. Read
    •  & P. W. Stankus
  63. Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York, NY, USA

    • D. Reynolds
  64. Lawrence Livermore National Laboratory, Livermore, CA, USA

    • R. A. Soltz
  65. IPNL, CNRS/IN2P3, Université Lyon, Villeurbanne, France

    • R. Tieulent
  66. Institute of Physics, Academy of Sciences of the Czech Republic, Prague , Czech Republic

    • V. Vrba

Consortia

  1. PHENIX Collaboration

Contributions

All PHENIX collaboration members contributed to the publication of these results in a variety of roles including detector construction, data collection, data processing, and analysis. A subset of collaboration members prepared this manuscript, and all authors had the opportunity to review the final version.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to J. L. Nagle.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41567-018-0360-0

Further reading