Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Guiding self-organized pattern formation in cell polarity establishment

Abstract

Spontaneous pattern formation in Turing systems relies on feedback. But patterns in cells and tissues seldom form spontaneously—instead they are controlled by regulatory biochemical interactions that provide molecular guiding cues. The relationship between these guiding cues and feedback in controlled biological pattern formation remains unclear. Here, we explore this relationship during cell-polarity establishment in the one-cell-stage Caenorhabditis elegans embryo. We quantify the strength of two feedback systems that operate during polarity establishment: feedback between polarity proteins and the actomyosin cortex, and mutual antagonism among polarity proteins. We characterize how these feedback systems are modulated by guiding cues from the centrosome, an organelle regulating cell cycle progression. By coupling a mass-conserved Turing-like reaction–diffusion system for polarity proteins to an active-gel description of the actomyosin cortex, we reveal a transition point beyond which feedback ensures self-organized polarization, even when cues are removed. Notably, the system switches from a guide-dominated to a feedback-dominated regime well beyond this transition point, which ensures robustness. Together, these results reveal a general criterion for controlling biological pattern-forming systems: feedback remains subcritical to avoid unstable behaviour, and molecular guiding cues drive the system beyond a transition point for pattern formation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mechanochemical feedback in PAR polarity establishment.
Fig. 2: Isolating both guiding cues by RNAi and determining their spatiotemporal profiles.
Fig. 3: Predicting PAR and myosin dynamics in the presence of guiding cues and feedback structures.
Fig. 4: Handover from cue-driven to mechanochemically self-organized dynamics.
Fig. 5: Robust PAR polarization breaks down close to the transition point.

Data availability

All data generated or analysed in this study are available from the corresponding author upon request.

References

  1. 1.

    Motegi, F. & Seydoux, G. The PAR network: redundancy and robustness in a symmetry-breaking system. Philos. Trans. Royal Soc. B 368, 20130010 (2013).

    Article  Google Scholar 

  2. 2.

    Hoege, C. & Hyman, A. A. Principles of PAR polarity in Caenorhabditis elegans embryos. Nat. Rev. Mol. Cell Biol. 14, 315–322 (2013).

    Article  Google Scholar 

  3. 3.

    Lang, C. F. & Munro, E. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development 144, 3405–3416 (2017).

    Article  Google Scholar 

  4. 4.

    Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell. 13, 609–622 (2007).

    Article  Google Scholar 

  5. 5.

    Motegi, F. et al. Microtubules induce self-organization of polarized PAR domains in Caenorhabditis elegans zygotes. Nat. Cell Biol. 13, 1361–1367 (2011).

    Article  Google Scholar 

  6. 6.

    Goehring, N. W. et al. Polarization of PAR proteins by advective triggering of a pattern-forming system. Science 334, 1137–1141 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    Trong, P. K., Nicola, E. M., Goehring, N. W., Kumar, K. V. & Grill, S. W. Parameter-space topology of models for cell polarity. New J. Phys. 16, 065009 (2014).

  8. 8.

    Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev. Cell. 7, 413–424 (2004).

    Article  Google Scholar 

  9. 9.

    Wang, S.-C. et al. Cortical forces and CDC-42 control clustering of PAR proteins for Caenorhabditis elegans embryonic polarization. Nat. Cell Biol. 19, 988–995 (2017).

    Article  Google Scholar 

  10. 10.

    Rodriguez, J. et al. aPKC cycles between functionally distinct PAR protein assemblies to drive cell polarity. Dev. Cell. 42, 400–415 (2017).

    Article  Google Scholar 

  11. 11.

    Dickinson, D. J., Schwager, F., Pintard, L., Gotta, M. & Goldstein, B. A single-cell biochemistry approach reveals PAR complex dynamics during cell polarization. Dev. Cell. 42, 416–434 (2017).

    Article  Google Scholar 

  12. 12.

    Schneider, S. Q. & Bowerman, B. Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu. Rev. Genet. 37, 221–249 (2003).

    Article  Google Scholar 

  13. 13.

    Cheeks, R. J. et al. C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr. Biol. 14, 851–862 (2004).

    Article  Google Scholar 

  14. 14.

    Beatty, A., Morton, D. G. & Kemphues, K. PAR-2, LGL-1 and the CDC-42 GAP CHIN-1 act in distinct pathways to maintain polarity in the C. elegans embryo. Development 140, 2005–2014 (2013).

    Article  Google Scholar 

  15. 15.

    Zonies, S., Motegi, F., Hao, Y. & Seydoux, G. Symmetry breaking and polarization of the C. elegans zygote by the polarity protein PAR-2. Development 137, 1669–1677 (2010).

    Article  Google Scholar 

  16. 16.

    Nance, J. & Zallen, J. A. Elaborating polarity: PAR proteins and the cytoskeleton. Development 138, 799–809 (2011).

    Article  Google Scholar 

  17. 17.

    Gross, P., Kumar, K. V. & Grill, S. W. How active mechanics and regulatory biochemistry combine to form patterns in development. Annu. Rev. Biophys. 46, 337–356 (2017).

    Article  Google Scholar 

  18. 18.

    Tse, Y. C. et al. RhoA activation during polarization and cytokinesis of the early Caenorhabditis elegans embryo is differentially dependent on NOP-1 and CYK-4. Mol. Biol. Cell. 23, 4020–4031 (2012).

    Article  Google Scholar 

  19. 19.

    Motegi, F. & Sugimoto, A. Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. Nat. Cell Biol. 8, 978–985 (2006).

    Article  Google Scholar 

  20. 20.

    Mayer, M., Depken, M., Bois, J. S., Jülicher, F. & Grill, S. W. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467, 617–621 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    Sailer, A., Anneken, A., Li, Y., Lee, S. & Munro, E. Dynamic opposition of clustered proteins stabilizes cortical polarity in the C. elegans zygote. Dev. Cell. 35, 131–142 (2015).

    Article  Google Scholar 

  22. 22.

    Goehring, N. W., Chowdhury, D., Hyman, A. A. & Grill, S. W. FRAP analysis of membrane-associated proteins: lateral diffusion and membrane-cytoplasmic exchange. Biophys. J. 99, 2443–2452 (2010).

    ADS  Article  Google Scholar 

  23. 23.

    Goehring, N. W., Hoege, C., Grill, S. W. & Hyman, A. A. PAR proteins diffuse freely across the anterior-posterior boundary in polarized C. elegans embryos. J. Cell Biol. 193, 583–594 (2011).

    Article  Google Scholar 

  24. 24.

    Nishikawa, M., Naganathan, S. R., Jülicher, F. & Grill, S. W. Controlling contractile instabilities in the actomyosin cortex. eLife 6, e19595 (2017).

    Article  Google Scholar 

  25. 25.

    Wu, J. Q. & Pollard, T. D. Counting cytokinesis proteins globally and locally in fission yeast. Science 310, 310–314 (2005).

    ADS  Article  Google Scholar 

  26. 26.

    David, D. J. V., Tishkina, A. & Harris, T. J. C. The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila. Development 137, 1645–1655 (2010).

    Article  Google Scholar 

  27. 27.

    Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. Royal Soc. B 237, 37–72 (1952).

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Kondo, S. & Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Marcon, L. & Sharpe, J. Turing patterns in development: what about the horse part? Curr. Opin. Genet. Dev. 22, 578–584 (2012).

    Article  Google Scholar 

  30. 30.

    Mikhailov, A. S. & Showalter, K. Control of waves, patterns and turbulence in chemical systems. Phys. Rep. 425, 79–194 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Prokopenko, M. Guided self-organization. HFSP J. 3, 287–289 (2009).

    Article  Google Scholar 

  32. 32.

    Otsuji, M. et al. A mass conserved reaction-diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, 1040–1054 (2007).

    MathSciNet  Article  Google Scholar 

  33. 33.

    Jilkine, A. & Edelstein-Keshet, L. A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Comput. Biol. 7, e1001121 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Wu, F. et al. Multistability and dynamic transitions of intracellular Min protein patterns. Mol. Syst. Biol. 12, 873 (2016).

    Article  Google Scholar 

  35. 35.

    Raspopovic, J., Marcon, L., Russo, L. & Sharpe, J. Digit patterning is controlled by a bmp-sox9-wnt Turing network modulated by morphogen gradients. Science 345, 566–570 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Corson, F., Couturier, L., Rouault, H., Mazouni, K. & Schweisguth, F. Self-organized notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science 356, 501–508 (2017).

    Article  Google Scholar 

  37. 37.

    Zagorski, M. et al. Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science 356, 1379–1383 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Lee, S. S. & Shibata, T. Self-organization and advective transport in the cell polarity formation for asymmetric cell division. J. Theor. Biol. 382, 1–14 (2015).

    MathSciNet  Article  Google Scholar 

  39. 39.

    Halatek, J. & Frey, E. Rethinking pattern formation in reaction–diffusion systems. Nat. Phys. 14, 507–514 (2018).

    Article  Google Scholar 

  40. 40.

    Bois, J. S., Jülicher, F. & Grill, S. W. Pattern formation in active fluids. Phys. Rev. Lett. 106, 028103 (2011).

    ADS  Article  Google Scholar 

  41. 41.

    Arata, Y. et al. Cortical polarity of the RING protein PAR-2 is maintained by exchange rate kinetics at the cortical-cytoplasmic boundary. Cell Reports 16, 2156–2168 (2016).

    Article  Google Scholar 

  42. 42.

    Saha, A. et al. Determining physical properties of the cell cortex. Biophys. J. 110, 1421–1429 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Robin, F. B., McFadden, W. M., Yao, B. & Munro, E. M. Single-molecule analysis of cell surface dynamics in Caenorhabditis elegans embryos. Nat. Methods 11, 677–682 (2014).

    Article  Google Scholar 

  44. 44.

    Munro, E. & Bowerman, B. Cellular symmetry breaking during Caenorhabditis elegans development. Cold Spring Harb. Perspect. Biol. 1, a003400 (2009).

    Article  Google Scholar 

  45. 45.

    Cowan, C. R. & Hyman, A. A. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431, 92–96 (2004).

    ADS  Article  Google Scholar 

  46. 46.

    Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  Google Scholar 

  47. 47.

    Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    ADS  Article  Google Scholar 

  48. 48.

    Blanchoud, S., Busso, C., Naef, F. & Goenczy, P. Quantitative analysis and modeling probe polarity establishment in C. elegans embryos. Biophys. J. 108, 799–809 (2015).

    ADS  Article  Google Scholar 

  49. 49.

    Ruettinger, S. et al. Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. J. Microsc. 232, 343–352 (2008).

    MathSciNet  Article  Google Scholar 

  50. 50.

    Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    Article  Google Scholar 

  51. 51.

    Thielicke, W. & Stamhuis, E. J. PIVlab - towards user-friendly, affordable and accurate digital particle imagevelocimetry in MATLAB. J. Open Res. Softw. 2, e30 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

P.G. acknowledges a EMBO Long-Term Fellowship for funding. The research of K.V.K. is supported by the Department of Biotechnology, India through a Ramalingaswami Re-entry Fellowship, and the Max Planck Society and the Department of Science and Technology, India through a Max Planck Partner Group at ICTS-TIFR. N.W.G. was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001086), the UK Medical Research Council (FC001086) and the Wellcome Trust (FC001086), and is a member of the GENiE network supported by COST Action BM1408 and EMBO. S.W.G was supported by the DFG (SPP 1782, GSC 97, GR 3271/2, GR 3271/3, GR 3271/4), the European Research Council (grants 281903 and 742712), ITN grants 281903 and 641639 from the EU, the Max-Planck-Society as a Max-Planck-Fellow, and the Human Frontier Science Program (RGP0023/2014). J.S.B. acknowledges the Human Frontier Science Program for funding. We thank D. Dickinson, B. Goldstein, F. Motegi and G. Seydoux for sharing C. elegans strains. We thank P. Gönczy, L. Hubatsch, T. Hyman, K. Kruse and M. Labouesse for discussion and insightful comments on the manuscript.

Author information

Affiliations

Authors

Contributions

P.G. performed experiments and K.V.K. developed the theory, with help from all authors. Data were analysed together with input from all authors. P.G., K.V.K., F.J. and S.W.G. wrote the manuscript.

Corresponding author

Correspondence to Stephan W. Grill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Equations, Supplementary Figures 1–15, Supplementary Tables 1–4, Supplementary References 1–27

Reporting Summary

Supplementary Video 1

Concentration field of PAR-2::GFP (blue, N = 8) and PAR-6::mCherry (red, N = 8), during mlc-4 RNAi, over time. Error bands represent the standard error of the mean. The solid line shows the best fit, using equations as described in Supplementary Table 1, with parameters shown in Supplementary Tables 2 and 3.

Supplementary Video 2

Ensemble-averaged concentration field of NMY-2::GFP (grey, N = 8) and the ensemble-averaged NMY-2 flow field (green, N = 10), during par-2 and par-6 double RNAi, over time. Error bands represent the standard error of the mean. The solid line shows the best fit, using equations as described in Supplementary Table 1, with parameters shown in Supplementary Tables 2 and 3.

Supplementary Video 3

Ensemble-averaged concentration field of PAR-2-MT-::GFP (blue, N = 9) and PAR-6::mCherry (red, N = 9) NMY-2::mKate2 (grey, N = 6) and the ensemble-averaged NMY-2 flow field (green, N = 9) for the PAR-2 MT- condition, over time. Error bands represent the standard error of the mean. The solid line shows the model prediction, using equations as described in Supplementary Table 1, with parameters shown in Supplementary Tables 2 and 3.

Supplementary Video 4

Ensemble-averaged concentration field of PAR-2::GFP (blue, N = 6) and PAR-6::mCherry (red, N = 6) NMY-2::GFP (grey, N = 8) and the ensemble-averaged NMY-2 flow field (green, N = 12) for the unperturbed condition, over time. Error bands represent the standard error of the mean. The solid line shows the model prediction, using equations as described in Supplementary Table 1, with parameters shown in Supplementary Tables 2 and 3.

Supplementary Video 5

Ensemble-averaged concentration field of PAR-2::GFP (blue, N = 6) and PAR-6::mCherry (red, N = 6) NMY-2::GFP (grey, N = 8) and the ensemble-averaged NMY-2 flow field (green, N = 12) for the unperturbed condition, over time. Error bands represent the standard error of the mean. The solid line shows a fit to the model, using equations as described in Supplementary Table 1, as shown in Supplementary Fig. 9

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gross, P., Kumar, K.V., Goehring, N.W. et al. Guiding self-organized pattern formation in cell polarity establishment. Nat. Phys. 15, 293–300 (2019). https://doi.org/10.1038/s41567-018-0358-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing