Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magneto-transport controlled by Landau polariton states

Abstract

Hybrid excitations, called polaritons, emerge in systems with strong light–matter coupling. Usually, they dominate the linear and nonlinear optical properties with applications in quantum optics. Here, we show the crucial role of the electronic component of polaritons in the magneto-transport of a cavity-embedded two-dimensional electron gas in the ultrastrong coupling regime. We show that the linear direct-current resistivity is substantially modified by the coupling to the cavity even without external irradiation. Our observations confirm recent predictions of vacuum-induced modification of the resistivity. Furthermore, photo-assisted transport in the presence of a weak irradiation field at sub-terahertz frequencies highlights the different roles of localized and delocalized states.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A quantum Hall system ultrastrongly coupled to a microwave cavity.
Fig. 2: Transport in vacuum fields.
Fig. 3: Transport with a small polariton population.
Fig. 4: Filling-factor-dependent photo-response reveals polariton branches and its decay channels.

Data availability

The datasets generated and analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. Thompson, R., Rempe, G. & Kimble, H. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132 (1992).

    Article  ADS  Google Scholar 

  2. Raimond, J.-M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001).

    MathSciNet  Article  ADS  Google Scholar 

  3. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314 (1992).

    Article  ADS  Google Scholar 

  4. Dini, D., Köhler, R., Tredicucci, A., Biasiol, G. & Sorba, L. Microcavity polariton splitting of intersubband transitions. Phys. Rev. Lett. 90, 116401 (2003).

    Article  ADS  Google Scholar 

  5. Smolka, S. et al. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas. Science 346, 332–335 (2014).

    Article  ADS  Google Scholar 

  6. Ciuti, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 (2005).

    Article  ADS  Google Scholar 

  7. Anappara, A. A. et al. Signatures of the ultrastrong light–matter coupling regime. Phys. Rev. B 79, 201303 (2009).

    Article  ADS  Google Scholar 

  8. Günter, G. et al. Sub-cycle switch-on of ultrastrong light–matter interaction. Nature 458, 178–181 (2009).

    Article  ADS  Google Scholar 

  9. Niemczyk, T. et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010).

    Article  Google Scholar 

  10. Forn-Daz, P. et al. Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010).

    Article  ADS  Google Scholar 

  11. Todorov, Y. et al. Ultrastrong light–matter coupling regime with polariton dots. Phys. Rev. Lett. 105, 196402 (2010).

    Article  ADS  Google Scholar 

  12. Jouy, P. et al. Transition from strong to ultrastrong coupling regime in mid-infrared metal–dielectric–metal cavities. Appl. Phys. Lett. 98, 231114 (2011).

    Article  ADS  Google Scholar 

  13. Muravev, V., Andreev, I., Kukushkin, I., Schmult, S. & Dietsche, W. Observation of hybrid plasmon-photon modes in microwave transmission of coplanar microresonators. Phys. Rev. B 83, 075309 (2011).

    Article  ADS  Google Scholar 

  14. Geiser, M. et al. Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells. Phys. Rev. Lett. 108, 106402 (2012).

    Article  ADS  Google Scholar 

  15. Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2d electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).

    Article  ADS  Google Scholar 

  16. Muravev, V., Gusikhin, P., Andreev, I. & Kukushkin, I. Ultrastrong coupling of high-frequency two-dimensional cyclotron plasma mode with a cavity photon. Phys. Rev. B 87, 045307 (2013).

    Article  ADS  Google Scholar 

  17. Gambino, S. et al. Exploring light–matter interaction phenomena under ultrastrong coupling regime. ACS Photon. 1, 1042–1048 (2014).

    Article  Google Scholar 

  18. Orgiu, E. et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14, 1123–1129 (2015).

    Article  ADS  Google Scholar 

  19. Zhang, Q. et al. Collective non-perturbative coupling of 2d electrons with high-quality-factor terahertz cavity photons. Nat. Phys. 12, 1005–1011 (2016).

    Article  Google Scholar 

  20. Paravicini-Bagliani, G. L. et al. Gate and magnetic field tunable ultrastrong coupling between a magnetoplasmon and the optical mode of an LC cavity. Phys. Rev. B 95, 205304 (2017).

    Article  ADS  Google Scholar 

  21. Todorov, Y. & Sirtori, C. Intersubband polaritons in the electrical dipole gauge. Phys. Rev. B 85, 045304 (2012).

    Article  ADS  Google Scholar 

  22. Hagenmüller, D., De Liberato, S. & Ciuti, C. Ultrastrong coupling between a cavity resonator and the cyclotron transition of a two-dimensional electron gas in the case of an integer filling factor. Phys. Rev. B 81, 235303 (2010).

    Article  ADS  Google Scholar 

  23. Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).

    Article  Google Scholar 

  24. Ravets, S. et al. Polaron polaritons in the integer and fractional quantum Hall regimes. Phys. Rev. Lett. 120, 057401 (2018).

    Article  ADS  Google Scholar 

  25. Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

    Article  ADS  Google Scholar 

  26. Li, X. et al. Vacuum Bloch–Siegert shift in Landau polaritons with ultra-high cooperativity. Nat. Photon. 12, 324–329 (2018).

    Article  ADS  Google Scholar 

  27. Ménard, J.-M. et al. Revealing the dark side of a bright exciton–polariton condensate. Nat. Commun. 5, 4648 (2014).

    Article  ADS  Google Scholar 

  28. Maissen, C. et al. Ultrastrong coupling in the near field of complementary split-ring resonators. Phys. Rev. B 90, 205309 (2014).

    Article  ADS  Google Scholar 

  29. Bayer, A. et al. Terahertz light–matter interaction beyond unity coupling strength. Nano Lett. 17, 6340–6344 (2017).

    Article  ADS  Google Scholar 

  30. Chen, H.-T. et al. Complementary planar terahertz metamaterials. Opt. Express 15, 1084–1095 (2007).

    Article  ADS  Google Scholar 

  31. Bartolo, N & Ciuti, C. Vacuum-dressed cavity magnetotransport of a two-dimensional electron gas. Phys. Rev. B 98, 205301 (2018).

  32. Maan, J., Englert, T., Tsui, D. & Gossard, A. Observation of cyclotron resonance in the photoconductivity of two-dimensional electrons. Appl. Phys. Lett. 40, 609–610 (1982).

    Article  ADS  Google Scholar 

  33. Kawano, Y., Hisanaga, Y., Takenouchi, H. & Komiyama, S. Highly sensitive and tunable detection of far-infrared radiation by quantum Hall devices. J. Appl. Phys. 89, 4037–4048 (2001).

    Article  ADS  Google Scholar 

  34. Dorozhkin, S. I., Bykov, A. A., Pechenezhski, I. & Bakarov, A. K. Coexistence of collective and single-particle effects in the photoresponse of a 2d electron gas to microwave radiation. JETP Lett. 85, 576–580 (2007).

    Article  Google Scholar 

  35. Stern, F. Polarizability of a two-dimensional electron gas. Phys. Rev. Lett. 18, 546 (1967).

    Article  ADS  Google Scholar 

  36. Allen, S. Jr, Tsui, D. & Logan, R. Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38, 980 (1977).

    Article  ADS  Google Scholar 

  37. Arikawa, T., Hyodo, K., Kadoya, Y. & Tanaka, K. Light-induced electron localization in a quantum Hall system. Nat. Phys. 13, 688 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We especially thank J. Andberger for performing many measurements confirming our results, P. Märki for valuable contributions to the measurement electronics and S. Rajabali for processing one of the transmission samples. The authors acknowledge financial support from ERC grant no. 340975 (MUSiC). The authors also acknowledge financial support from the Swiss National Science Foundation (SNF) through the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT).

Author information

Authors and Affiliations

Authors

Contributions

G.L.P.-B. developed the sample design and the fabrication. He also built the main magneto-transport set-up, developed the experimental technique, performed measurements and finite-element simulations. He wrote the paper. F.A. developed the experimental technique and the set-up, performed measurements and wrote the paper. E.R. performed the second set of measurements. F.V. developed an early experimental setup, performed early measurements and analysed early results. J.K. made THz-TDS measurements and scanning electron micrographs. M.B. grew the epitaxial 2DEG. N.B. and C.C. developed the theory on transport under illumination and wrote the paper. C.R. developed early sample designs and fabricated them. T.I. and K.E. provided critical know-how on transport and electronics to build the two transport set-ups. G.S. supported and designed experiments, set-ups and samples. He contributed to the data analysis and wrote the paper. J.F. designed the experiments, analysed the data, supervised the whole work and wrote the paper.

Corresponding authors

Correspondence to Gian L. Paravicini-Bagliani or Giacomo Scalari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figs. 1–7 and Supplementary References.

Supplementary Video

Filling-factor-dependent photoresponse. Each colourmap frame corresponds to a measurement of the longitudinal photo response with the Landau level density of states aligning with the Fermi energy EF as shown on the left. The top and bottom panels of Fig. 4a represent two specific frames (in the beginning and middle of the video)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paravicini-Bagliani, G.L., Appugliese, F., Richter, E. et al. Magneto-transport controlled by Landau polariton states. Nature Phys 15, 186–190 (2019). https://doi.org/10.1038/s41567-018-0346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0346-y

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing