Signatures of the many-body localized regime in two dimensions

Abstract

Lessons from Anderson localization highlight the importance of the dimensionality of real space for localization due to disorder. More recently, studies of many-body localization have focused on the phenomenon in one dimension using techniques of exact diagonalization and tensor networks. On the other hand, experiments in two dimensions have provided concrete results going beyond the previously numerically accessible limits while posing several challenging questions. We present the large-scale numerical examination of a disordered Bose–Hubbard model in two dimensions realized in cold atoms, which shows entanglement-based signatures of many-body localization. By generalizing a low-depth quantum circuit to two dimensions, we approximate eigenstates in the experimental parameter regimes for large systems, which is beyond the scope of exact diagonalization. A careful analysis of the eigenstate entanglement structure provides an indication of the putative phase transition marked by a peak in the fluctuations of entanglement entropy in a parameter range consistent with experiments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quantum circuits in the diagrammatic representation of tensor networks.
Fig. 2: Benchmark calculations for a 4 × 4 system.
Fig. 3: Entropy and on-site occupation distributions.
Fig. 4: Variance of the entropy as a function of Δ for 30 disorder realizations.
Fig. 5: Mobility edges obtained as explained in the main text.
Fig. 6: Dependence of correlation length ξ on disorder strength Δ for nmax = 1.

Data availability

The data that support the plots within this article and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    ADS  Article  Google Scholar 

  2. 2.

    Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    ADS  Article  Google Scholar 

  3. 3.

    Gornyi, I., Mirlin, A. & Polyakov, D. Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95, 206603 (2005).

    ADS  Article  Google Scholar 

  4. 4.

    Pal, A. & Huse, D. A. Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).

    ADS  Article  Google Scholar 

  6. 6.

    Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Bardarson, J. H., Pollmann, F. & Moore, J. E. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Huse, D. A., Nandkishore, R., Oganesyan, V., Pal, A. & Sondhi, S. L. Localization-protected quantum order. Phys. Rev. B 88, 014206 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Pekker, D., Refael, G., Altman, E., Demler, E. & Oganesyan, V. Hilbert-glass transition: new universality of temperature-tuned many-body dynamical quantum criticality. Phys. Rev. X 4, 011052 (2014).

    Google Scholar 

  10. 10.

    Bahri, Y., Vosk, R., Altman, E. & Vishwanath, A. Localization and topology protected quantum coherence at the edge of hot matter. Nat. Commun. 6, 7341 (2015).

    Article  Google Scholar 

  11. 11.

    Chandran, A., Khemani, V., Laumann, C. R. & Sondhi, S. L. Many-body localization and symmetry-protected topological order. Phys. Rev. B 89, 144201 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Kjäll, J. A., Bardarson, J. H. & Pollmann, F. Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett. 113, 107204 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Vosk, R., Huse, D. A. & Altman, E. Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X 5, 031032 (2015).

    Google Scholar 

  14. 14.

    Potter, A. C., Vasseur, R. & Parameswaran, S. A. Universal properties of many-body delocalization transitions. Phys. Rev. X 5, 031033 (2015).

    Google Scholar 

  15. 15.

    Chandran, A., Laumann, C. R. & Oganesyan, V. Finite size scaling bounds on many-body localized phase transitions. Preprint at https://arxiv.org/abs/1509.04285 (2015).

  16. 16.

    Lim, S. P. & Sheng, D. N. Many-body localization and transition by density matrix renormalization group and exact diagonalization studies. Phys. Rev. B 94, 045111 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Khemani, V., Lim, S. P., Sheng, D. N. & Huse, D. A. Critical properties of the many-body localization transition. Phys. Rev. X 7, 021013 (2017).

    Google Scholar 

  18. 18.

    Dumitrescu, P. T., Vasseur, R. & Potter, A. C. Scaling theory of entanglement at the many-body localization transition. Phys. Rev. Lett. 119, 110604 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    ADS  Article  Google Scholar 

  20. 20.

    Imbrie, J. Z. On many-body localization for quantum spin chains. J. Stat. Phys. 163, 998–1048 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Chandran, A., Pal, A., Laumann, C. R. & Scardicchio, A. Many-body localization beyond eigenstates in all dimensions. Phys. Rev. B 94, 144203 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    De Roeck, W. & Huveneers, F. Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Roeck, W. D. & Imbrie, J. Z. Many-body localization: stability and instability. Phil. Trans. R. Soc. A 375, 20160422 (2017).

    Article  Google Scholar 

  25. 25.

    Agarwal, K. et al. Rare-region effects and dynamics near the many-body localization transition. Ann. Phys. 529, 1600326 (2017).

    MathSciNet  Article  Google Scholar 

  26. 26.

    Luitz, D. J., Huveneers, F. & De Roeck, W. How a small quantum bath can thermalize long localized chains. Phys. Rev. Lett. 119, 150602 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Ponte, P., Laumann, C. R., Huse, D. A. & Chandran, A. Thermal inclusions: how one spin can destroy a many-body localized phase. Phil. Trans. R. Soc. A 375, 20160428 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Potirniche, I.-D., Banerjee, S. & Altman, E. On the stability of many-body localization in d > 1. Preprint at https://arxiv.org/abs/1805.01475 (2018).

  29. 29.

    Choi, J.-y et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Bordia, P. et al. Probing slow relaxation and many-body localization in two-dimensional quasi-periodic systems. Phys. Rev. X 7, 041047 (2017).

    Google Scholar 

  31. 31.

    Wahl, T. B., Pal, A. & Simon, S. H. Efficient representation of fully many-body localized systems using tensor networks. Phys. Rev. X 7, 021018 (2017).

    Google Scholar 

  32. 32.

    Geraedts, S. D., Nandkishore, R. & Regnault, N. Manybody localization and thermalization: insights from the entanglement spectrum. Phys. Rev. B 93, 174202 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Inglis, S. & Pollet, L. Accessing many-body localized states through the generalized Gibbs ensemble. Phys. Rev. Lett. 117, 120402 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Thomson, S. J. & Schiró, M. Time evolution of many-body localized systems with the flow equation approach. Phys. Rev. B 97, 060201(R) (2018).

    ADS  Article  Google Scholar 

  35. 35.

    Luitz, D. J., Laorencie, N. & Alet, F. Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91, 081103 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Rubio-Abadal, A. et al. Probing many-body localization in the presence of a quantum bath. Preprint at https://arxiv.org/abs/1805.00056 (2018).

  37. 37.

    Serbyn, M., Papić, Z. & Abanin, D. A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).

    ADS  Article  Google Scholar 

  39. 39.

    Ros, V., Mueller, M. & Scardicchio, A. Integrals of motion in the many-body localized phase. Nucl. Phys. B 891, 420–465 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  40. 40.

    Imbrie, J. Z., Ros, V. & Scardicchio, A. Local integrals of motion in many-body localized systems. Ann. Phys. 529, 1600278 (2017).

    MathSciNet  Article  Google Scholar 

  41. 41.

    Bauer, B. & Nayak, C. Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech. 2013, P09005 (2013).

    MathSciNet  Article  Google Scholar 

  42. 42.

    Pekker, D. & Clark, B. K. Encoding the structure of manybody localization with matrix product operators. Phys. Rev. B 95, 035116 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Chandran, A., Carrasquilla, J., Kim, I. H., Abanin, D. A. & Vidal, G. Spectral tensor networks for many-body localization. Phys. Rev. B 92, 024201 (2015).

    ADS  Article  Google Scholar 

  44. 44.

    Pollmann, F., Khemani, V., Cirac, J. I. & Sondhi, S. L. Efficient variational diagonalization of fully many-body localized Hamiltonians. Phys. Rev. B 94, 041116 (2016).

    ADS  Article  Google Scholar 

  45. 45.

    Friesdorf, M., Werner, A. H., Brown, W., Scholz, V. B. & Eisert, J. Many-body localization implies that eigenvectors are matrix-product states. Phys. Rev. Lett. 114, 170505 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    Yu, X., Pekker, D. & Clark, B. K. Finding matrix product state representations of highly excited eigenstates of many-body localized hamiltonians. Phys. Rev. Lett. 118, 017201 (2017).

    ADS  Article  Google Scholar 

  47. 47.

    Khemani, V., Pollmann, F. & Sondhi, S. L. Obtaining highly excited eigenstates of many-body localized hamiltonians by the density matrix renormalization group approach. Phys. Rev. Lett. 116, 247204 (2016).

    ADS  Article  Google Scholar 

  48. 48.

    Wahl, T. B. Tensor networks demonstrate the robustness of localization and symmetry protected topological phases. Phys. Rev. B 98, 054204 (2018).

    ADS  Article  Google Scholar 

  49. 49.

    Kulshreshtha, A., Pal, A., Wahl, T. B. & Simon, S. H. Behavior of l-bits near the many-body localization transition. Preprint at https://arxiv.org/abs/1707.05362 (2018).

  50. 50.

    Yu, X., Luitz, D. J. & Clark, B. K. Bimodal entanglement entropy distribution in the many-body localization transition. Phys. Rev. B 94, 184202 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Chandran and C. Laumann for stimulating discussions and a careful reading of the manuscript, and A. Abadal, I. Bloch, J.-Y. Choi and C. Gross for detailed discussions related to the experiments. The authors also thank D. Huse, J. Imbrie, V. Oganesyan, W. De Roeck, A. Scardicchio, S. Sondhi and T. Spencer for fruitful discussions. S.H.S. and T.B.W. are both supported by TOPNES (EPSRC grant no. EP/I031014/1). S.H.S. is also supported by EPSRC grant no. EP/N01930X/1. T.B.W. acknowledges use of the University of Oxford Advanced Research Computing (ARC) facility in carrying out this work (https://doi.org/10.5281/zenodo.22558). A.P. is supported by the Glasstone Fellowship and thanks the Aspen Center for Physics, which is supported by National Science Foundation grant no. PHY-1607611, and the Simons Center for Geometry and Physics, Stonybrook University, for their hospitality, where part of this work was performed. T.B.W. is grateful for support by the European Commission under the Marie Curie Programme. Statement of compliance with EPSRC policy framework on research data: this publication is theoretical work that does not require supporting research data.

Author information

Affiliations

Authors

Contributions

T.B.W. performed all the numerical simulations. The theoretical analysis and writing of the manuscript were jointly performed by A.P., T.B.W. and S.H.S.

Corresponding author

Correspondence to Arijeet Pal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wahl, T.B., Pal, A. & Simon, S.H. Signatures of the many-body localized regime in two dimensions. Nature Phys 15, 164–169 (2019). https://doi.org/10.1038/s41567-018-0339-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing