Letter | Published:

A photon–photon quantum gate based on Rydberg interactions

Abstract

The interaction between Rydberg states of neutral atoms is strong and long-range, making it appealing to put it to use in the context of quantum technologies. Recently, first applications of this idea have been reported in the fields of quantum computation1 and quantum simulation2,3,4. Furthermore, electromagnetically induced transparency allows one to map these Rydberg interactions to light5,6,7,8,9,10,11,12,13,14,15. Here we exploit this mapping and the resulting interaction between photons to realize a photon–photon quantum gate16,17, demonstrating the potential of Rydberg systems as a platform also for quantum communication and quantum networking18. We measure a controlled-NOT truth table with a fidelity of 70(8)% and an entangling-gate fidelity of 63.7(4.5)%, both post-selected upon detection of a control and a target photon. The level of control reached here is an encouraging step towards exploring novel many-body states of photons or for future applications in quantum communication and quantum networking18.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B 49, 202001 (2016).

  2. 2.

    Schauß, P. et al. Crystallization in Ising quantum magnets. Science 347, 1455–1458 (2015).

  3. 3.

    Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016).

  4. 4.

    Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

  5. 5.

    Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

  6. 6.

    Friedler, I., Petrosyan, D., Fleischhauer, M. & Kurizki, G. Long-range interactions and entanglement of slow single-photon pulses. Phys. Rev. A 72, 043803 (2005).

  7. 7.

    Gorshkov, A. V., Otterbach, J., Fleischhauer, M., Pohl, T. & Lukin, M. D. Photon–photon interactions via Rydberg blockade. Phys. Rev. Lett. 107, 133602 (2011).

  8. 8.

    Pritchard, J. D. et al. Cooperative atom–light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010).

  9. 9.

    Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

  10. 10.

    Baur, S., Tiarks, D., Rempe, G. & Dürr, S. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014).

  11. 11.

    Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014).

  12. 12.

    Tiarks, D., Baur, S., Schneider, K., Dürr, S. & Rempe, G. Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014).

  13. 13.

    Tiarks, D., Schmidt, S., Rempe, G. & Dürr, S. Optical π phase shift created with a single-photon pulse. Sci. Adv. 2, 1600036 (2016).

  14. 14.

    Ningyuan, J. et al. Observation and characterization of cavity Rydberg polaritons. Phys. Rev. A 93, 041802 (2016).

  15. 15.

    Thompson, J. D. et al. Symmetry-protected collisions between strongly interacting photons. Nature 542, 206–209 (2017).

  16. 16.

    O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

  17. 17.

    Hacker, B., Welte, S., Rempe, G. & Ritter, S. A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016).

  18. 18.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

  19. 19.

    He, B., Sharypov, A. V., Sheng, J., Simon, C. & Xiao, M. Two-photon dynamics in coherent Rydberg atomic ensemble. Phys. Rev. Lett. 112, 133606 (2014).

  20. 20.

    Paredes-Barato, D. & Adams, C. S. All-optical quantum information processing using Rydberg gates. Phys. Rev. Lett. 112, 040501 (2014).

  21. 21.

    Khazali, M., Heshami, K. & Simon, C. Photon–photon gate via the interaction between two collective Rydberg excitations. Phys. Rev. A 91, 030301 (2015).

  22. 22.

    Hao, Y. M. et al. Quantum controlled-phase-flip gate between a flying optical photon and a Rydberg atomic ensemble. Sci. Rep. 5, 10005 (2015).

  23. 23.

    Das, S. et al. Photonic controlled-PHASE gates through Rydberg blockade in optical cavities. Phys. Rev. A 93, 040303 (2016).

  24. 24.

    Wade, A. C. J., Mattioli, M. & Mølmer, K. Single-atom single-photon coupling facilitated by atomic-ensemble dark-state mechanisms. Phys. Rev. A 94, 053830 (2016).

  25. 25.

    Murray, C. R. & Pohl, T. Coherent photon manipulation in interacting atomic ensembles. Phys. Rev. X 7, 031007 (2017).

  26. 26.

    Lahad, O. & Firstenberg, O. Induced cavities for photonic quantum gates. Phys. Rev. Lett. 119, 113601 (2017).

  27. 27.

    Milburn, G. J. Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989).

  28. 28.

    Bowdrey, M. D., Oi, D. K. L., Short, A. J., Banaszek, K. & Jones, J. A. Fidelity of single qubit maps. Phys. Lett. A 294, 258–260 (2002).

  29. 29.

    Hsiao, Y.-F. et al. Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett. 120, 183602 (2018).

  30. 30.

    Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Giant Rydberg excitons in the copper oxide Cu2O. Nature 514, 343–347 (2014).

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft through Nanosystems Initiative Munich.

Author information

All authors contributed extensively to the work presented here.

Correspondence to Stephan Dürr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Atomic level schemes.
Fig. 2: Simplified scheme of the experimental set-up.
Fig. 3: Performance of the photon-photon gate.