Spin pumping from nuclear spin waves


Various spintronic phenomena originate from the exchange of angular momentum between the spin of electrons and other degrees of freedom in crystalline materials. Many degrees of freedom, such as magnetization1 and mechanical motion2, have already been united into this exchange framework. However, the nuclear spin—a key angular momentum—has yet to be incorporated. Here we observe spin pumping from nuclear magnetic resonance (NMR), in which nuclear spin dynamics emits a spin current, a flow of spin angular momentum of electrons. By using the canted antiferromagnet MnCO3, in which typical nuclear spin-wave formation is established due to the reinforced hyperfine coupling, we find that a spin current is generated from an NMR. Nuclear spins are indispensable for quantum information technology3 and are also frequently used in various sensors, such as in magnetic resonance imaging4. The observed NMR spin pumping allows spin-current generation from nuclei and will enable spintronic detection of nuclear spin states.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Concept of NMR spin pumping and sample properties.
Fig. 2: Observation of spin current induced by NMR.
Fig. 3: Power dependence of spin-pumping voltage.
Fig. 4: Magnetic field dependence of spin-pumping voltage.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Maekawa, S., Valenzuela, S. O., Saitoh, E., Kimura, T. (eds) Spin Current (Oxford Univ. Press, Oxford, 2012).

    Google Scholar 

  2. 2.

    Matsuo, M., Saitoh, E. & Maekawa, S. Spin-mechatronics. J. Phys. Soc. Jpn. 86, 011011 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, Cambridge, 2010).

  4. 4.

    McRobbie, D. W., Moore, E. A., Graves, M. J. & Prince, M. R. MRI from Picture to Proton (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  5. 5.

    Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    ADS  Article  Google Scholar 

  6. 6.

    Mizukami, S., Ando, Y. & Miyazaki, T. Effect of spin diffusion on Gilbert damping for a very thin Permalloy layer in Cu/Permalloy/Cu/Pt films. Phys. Rev. B 66, 104413 (2002).

    ADS  Article  Google Scholar 

  7. 7.

    Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    Azevedo, A., Vilela Leão, L. H., Rodríguez-Suárez, R. L., Oliveira, A. B. & Rezende, S. M. dc effect in ferromagnetic resonance: Evidence of the spin-pumping effect? J. Appl. Phys. 97, 10C715 (2005).

    Article  Google Scholar 

  9. 9.

    Costache, M. V., Sladkov, M., Watts, S. M., van der Wal, C. H. & van Wees, B. J. Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet. Phys. Rev. Lett. 97, 216603 (2006).

    ADS  Article  Google Scholar 

  10. 10.

    Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    Smet, J. H. et al. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor. Nature 415, 281–286 (2002).

    ADS  Article  Google Scholar 

  12. 12.

    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    ADS  Article  Google Scholar 

  13. 13.

    Suhl, H. Effective nuclear spin interactions in ferromagnets. Phys. Rev. 109, 606 (1958).

    ADS  Article  Google Scholar 

  14. 14.

    Nakamura, T. Indirect coupling of nuclear spins in antiferromagnet with particular reference to MnF2 at very low temperatures. Prog. Theor. Phys. 20, 542–552 (1958).

    ADS  Article  Google Scholar 

  15. 15.

    de Gennes, P. G., Pincus, P. A., Harmann-Boutron, F. & Winter, J. M. Nuclear magnetic resonance modes in magnetic material. I. Theory. Phys. Rev. 129, 1105–1115 (1963).

    ADS  Article  Google Scholar 

  16. 16.

    Tulin, V. A. Nuclear spin waves in magnetically ordered materials. Sov. J. Low. Temp. Phys. 5, 455–469 (1979).

    Google Scholar 

  17. 17.

    Borovik-Romanov, A. S. et al. The spin echo in systems with a coupled electron–nuclear precession. Sov. Phys. Usp. 27, 235–255 (1984).

    ADS  Article  Google Scholar 

  18. 18.

    Andrienko, A. V., Ozhogin, V. I., Safonov, V. L. & Yakubovskiǐ, A. Yu Nuclear spin wave research. Sov. Phys. Usp. 34, 843–861 (1991).

    ADS  Article  Google Scholar 

  19. 19.

    Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    ADS  Article  Google Scholar 

  20. 20.

    Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    Andrienko, A. V., Ozhogin, V. I., Safonov, V. L. & Yakubovskiǐ, A. Yu Influence of electronic-magnon relaxation rate on the damping of nuclear spin waves in antiferromagnets. Sov. Phys. JETP 62, 794–799 (1985).

    Google Scholar 

  23. 23.

    Borovik-Romanov, A. S. & Orlova, M. P. Magnetic properties of cobalt and manganese carbonates. Sov. Phys. JETP 4, 531–534 (1957).

    Google Scholar 

  24. 24.

    Borovik-Romanov, A. S. Investigation of weak ferromagnetism in the MnCO3 single crystal. Sov. Phys. JETP 9, 539–549 (1959).

    Google Scholar 

  25. 25.

    Shaltiel, D. Nuclear magnetic resonance of MnCO3 in the canted spin state. Phys. Rev. 142, 300–306 (1966).

    ADS  Article  Google Scholar 

  26. 26.

    Tateishi, K. et al. Room temperature hyperpolarization of nuclear spins in bulk. Proc. Natl. Acad. Sci. USA 111, 7527–7530 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Gregg, J. F. et al. Microscopic explanation of microwave spin pumping in spintronics. Preprint at https://arxiv.org/abs/1711.06048 (2017).

  28. 28.

    Vagner, I. D. Recent Trends in Theory of Physical Phenomena in High Magnetic Fields Ch. 23 (Springer, Dordrecht, 2003).

Download references


We thank H. Yasuoka, S. Maekawa, M. Matsuo, H. Chudo, K. Harii and M. Imai for fruitful discussions. This research was supported by JST ERATO ‘Spin Quantum Rectification Project’ (JPMJER1402), JSPS KAKENHI (no. 17H04806, no. JP18H04215, no. 18H04311, no. JP16J03699 and no. 17H02927) and MEXT (Innovative Area ‘Nano Spin Conversion Science’ (no. 26103005)).

Author information




S.W. conceived the experiments in discussions with Y.S. and D.H. Y.S., J.L. and S.W. constructed the experimental set-up, performed the experiments, and analysed the experimental data. S.T. conducted the theoretical calculations. Y.S., J.L., S.W. and E.S. wrote the manuscript. E.S. supervised the project. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Yuki Shiomi or Eiji Saitoh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Theoretical calculations; Supplementary Figures 1–8; Supplementary References 1–8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shiomi, Y., Lustikova, J., Watanabe, S. et al. Spin pumping from nuclear spin waves. Nature Phys 15, 22–26 (2019). https://doi.org/10.1038/s41567-018-0310-x

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing