Giant topological Hall effect in correlated oxide thin films


Strong electronic correlations can produce remarkable phenomena such as metal–insulator transitions and greatly enhance superconductivity, thermoelectricity or optical nonlinearity. In correlated systems, spatially varying charge textures also amplify magnetoelectric effects or electroresistance in mesostructures. However, how spatially varying spin textures may influence electron transport in the presence of correlations remains unclear. Here we demonstrate a very large topological Hall effect (THE) in thin films of a lightly electron-doped charge-transfer insulator, (Ca,Ce)MnO3. Magnetic force microscopy reveals the presence of magnetic bubbles, whose density as a function of magnetic field peaks near the THE maximum. The THE critically depends on carrier concentration and diverges at low doping, near the metal–insulator transition. We discuss the strong amplification of the THE by correlation effects and give perspectives for its non-volatile control by electric fields.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Doping-dependent structural, electronic and magnetic properties of Ca1−xCexMnO3 thin films.
Fig. 2: Topological Hall effect in 4% CCMO.
Fig. 3: Connection between micromagnetism and THE.
Fig. 4: Doping dependence of the THE.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    Article  Google Scholar 

  2. 2.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Malozemoff, A. P. & Slonczewski, J. C. Magnetic Domain Walls in Bubble Materials. Magnetic Domain Walls in Bubble Materials (Academic, Cambridge, 1979).

  5. 5.

    Yu, X., Tokunaga, Y., Taguchi, Y. & Tokura, Y. Variation of topology in magnetic bubbles in a colossal magnetoresistive manganite. Adv. Mater. 29, 1603958 (2017).

    Article  Google Scholar 

  6. 6.

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    Bruno, P., Dugaev, V. K. & Taillefumier, M. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).

    ADS  Article  Google Scholar 

  8. 8.

    Nagai, T. et al. Formation of nanoscale magnetic bubbles in ferromagnetic insulating manganite La7/8Sr1/8MnO3. Appl. Phys. Lett. 101, 162401 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Nagao, M. et al. Direct observation and dynamics of spontaneous skyrmion-like magnetic domains in a ferromagnet. Nat. Nanotech. 8, 325–328 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Bocquet, A. E. et al. Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra. Phys. Rev. B 53, 1161–1170 (1996).

    ADS  Article  Google Scholar 

  11. 11.

    Bousquet, E. & Spaldin, N. Induced magnetoelectric response in Pnma perovskites. Phys. Rev. Lett. 107, 197603 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Zeng, Z., Greenblatt, M. & Croft, M. Charge ordering and magnetoresistance of Ca1–xCexMnO3. Phys. Rev. B 63, 224410 (2001).

    ADS  Article  Google Scholar 

  13. 13.

    Xiang, P.-H., Yamada, H., Akoh, H. & Sawa, A. Phase diagrams of strained Ca1–xCexMnO3 films. J. Appl. Phys. 112, 113703 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    Marinova, M. et al. Depth profiling charge accumulation from a ferroelectric into a doped Mott insulator. Nano. Lett. 15, 2533–2541 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Caspi, E. N. et al. Structural and magnetic phase diagram of the two-electron-doped (Ca1–xCex)MnO3 system: effects of competition among charge, orbital, and spin ordering. Phys. Rev. B 69, 104402 (2004).

    ADS  Article  Google Scholar 

  16. 16.

    Neubauer, A. et al. Topological Hall effect in the α phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    ADS  Article  Google Scholar 

  17. 17.

    Huang, S. X. & Chien, C. L. Extended Skyrmion phase in epitaxial FeGe(111) thin films. Phys. Rev. Lett. 108, 267201 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Bibes, M. et al. Anisotropic magnetoresistance and anomalous Hall effect in manganite thin films. J. Phys. Condens. Matter. 17, 2733–2740 (2005).

    ADS  Article  Google Scholar 

  20. 20.

    Matl, P. et al. Hall effect of the colossal magnetoresistance manganite La1–xCaxMnO3. Phys. Rev. B 57, 10248–10251 (1998).

    ADS  Article  Google Scholar 

  21. 21.

    Jakob, G., Martin, F., Westerburg, W. & Adrian, H. Evidence of charge-carrier compensation effects in La0.67Ca0.33MnO3. Phys. Rev. B 57, 10252–10255 (1998).

    ADS  Article  Google Scholar 

  22. 22.

    Ye, J. et al. Berry phase theory of the anomalous Hall effect: application to colossal magnetoresistance manganites. Phys. Rev. Lett. 83, 3737–3740 (1999).

    ADS  Article  Google Scholar 

  23. 23.

    Calderón, M. J. & Brey, L. Skyrmion strings contribution to the anomalous Hall effect in double-exchange systems. Phys. Rev. B 63, 54421 (2001).

    ADS  Article  Google Scholar 

  24. 24.

    Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Nakamura, M. et al. Emergence of topological Hall effect in half-metallic manganite thin films by tuning perpendicular magnetic anisotropy. J. Phys. Soc. Jpn 87, 074704 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Onoda, M., Tatara, G. & Nagaosa, N. Anomalous Hall effect and skyrmion number in real and momentum spaces. J. Phys. Soc. Jpn 73, 2624–2627 (2004).

    ADS  Article  Google Scholar 

  27. 27.

    Nakazawa, K., Bibes, M. & Kohno, H. Topological Hall effect from strong to weak coupling. J. Phys. Soc. Jpn 87, 033705 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Brinkman, W. F. & Rice, T. M. Application of Gutzwiller’s variational method to the metal–insulator transition. Phys. Rev. B 2, 4302–4304 (1970).

    ADS  Article  Google Scholar 

  29. 29.

    Dobrosavljevic, V., Trived, N. & Valles, J. M. Conductor–Insulator Quantum Phase Transitions (Oxford Univ. Press, Oxford, 2012).

  30. 30.

    Fujishima, Y., Tokura, Y., Arima, T. & Uchida, S. Optical-conductivity spectra of Sr1–xLaxTiO3: filling-dependent effect of the electron correlation. Phys. Rev. B 46, 11167–11170 (1992).

    ADS  Article  Google Scholar 

  31. 31.

    Sakai, H. et al. Electron doping in the cubic perovskite SrMnO3: isotropic metal versus chainlike ordering of Jahn–Teller polarons. Phys. Rev. B 82, 180409 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Zhang, J., McIlroy, D. N. & Dowben, P. A. Correlation between screening and electron effective mass across the nonmetal-metal transition in ultrathin films. Phys. Rev. B 52, 11380–11386 (1995).

    ADS  Article  Google Scholar 

  33. 33.

    Matsuno, J. et al. Interface-driven topological Hall effect in SrRuO3–SrIrO3 bilayer. Sci. Adv. 2, e1600304 (2016).

    Google Scholar 

  34. 34.

    Yamada, H. et al. Ferroelectric control of a Mott insulator. Sci. Rep. 3, 2834 (2013).

    Article  Google Scholar 

  35. 35.

    Shiomi, Y., Iguchi, S. & Tokura, Y. Emergence of topological Hall effect from fanlike spin structure as modified by Dzyaloshinsky–Moriya interaction in MnP. Phys. Rev. B 86, 180404 (2012).

    ADS  Article  Google Scholar 

  36. 36.

    Kanazawa, N. et al. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

    ADS  Article  Google Scholar 

  37. 37.

    Porter, N. A. et al. Giant topological Hall effect in strained Fe0.7Co0.3Si epilayers. Preprint at (2013).

  38. 38.

    Ohuchi, Y. et al. Topological Hall effect in thin films of the Heisenberg ferromagnet EuO. Phys. Rev. B 91, 245115 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Wang, W. et al. Visualizing weak ferromagnetic domains in multiferroic hexagonal ferrite thin film. Phys. Rev. B 95, 134443 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Rugar, D. et al. Magnetic force microscopy: general principles and application to longitudinal recording media. J. Appl. Phys. 68, 1169–1183 (1990).

    ADS  Article  Google Scholar 

Download references


The authors thank V. Cros, V. Dobrosavljevic, J. Iñiguez, J.-V. Kim, D. Maccariello, J. Matsuno, I. Mertig, N. Nagaosa and N. Reyren for useful discussions, J.-Y. Chauleau and M. Viret for second harmonic generation experiments, N. Jaouen for resonant magnetic X-ray diffraction, J. Varignon for preparing Fig. 1a and J.-M. George for his help with some magnetotransport measurements. This research received financial support from the ERC Consolidator grant ‘MINT’ (contract no. 615759) and ANR project ‘FERROMON’. This work was also supported by a public grant overseen by the ANR as part of the ‘Investissement d’Avenir’ programme (LABEX NanoSaclay, ref. ANR-10-LABX-0035) through projects ‘FERROMOTT’ and ‘AXION’ and by the Spanish Government through project no. MAT2014-56063-C2-1-R and MAT2017-85232-R (AEI/FEDER, UE), and Severo Ochoa SEV-2015-0496 and the Generalitat de Catalunya (2014SGR 734 project). B.C. acknowledges grant no. FPI BES-2012-059023, R.C. acknowledges support from CNPq-Brazil, and J.S. thanks the University Paris-Saclay (D’Alembert programme) and CNRS for financing his stay at CNRS/Thales. Work at Rutgers was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy under award no. DE-SC0018153. H.K. is supported by JSPS KAKENHI grants nos. 25400339, 15H05702 and 17H02929. K.N. is supported by a Grant-in-Aid for JSPS Research Fellow grant no. 16J05516, and by a Program for Leading Graduate Schools ‘Integrative Graduate Education and Research in Green Natural Sciences’.

Author information




M.B. proposed the study and supervised it with V.G. L.V., A.S. and Q.Z. prepared the samples and performed X-ray diffraction and atomic force microscopy. L.V. and A.S. performed the magnetic characterization and magnetotransport experiments, and analysed the data with M.B. and V.G. B.C., G.H. and R.C. performed the magneto-optical Kerr effect measurement experiments. W.Wa. and W.Wu. performed the MFM experiments and analysed them with V.G. and S.F. S.V., R.A. and E.W. performed X-ray absorption spectroscopy experiments. K.N. and H.K. developed the theoretical model, with inputs from J.S., A.B. and M.B. M.B. wrote the manuscript. All authors discussed the data and contributed to the manuscript.

Corresponding author

Correspondence to Manuel Bibes.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information.

Supplementary Figures 1–8; Supplementary References 1–13

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vistoli, L., Wang, W., Sander, A. et al. Giant topological Hall effect in correlated oxide thin films. Nature Phys 15, 67–72 (2019).

Download citation

Further reading