Strong electronic correlations can produce remarkable phenomena such as metal–insulator transitions and greatly enhance superconductivity, thermoelectricity or optical nonlinearity. In correlated systems, spatially varying charge textures also amplify magnetoelectric effects or electroresistance in mesostructures. However, how spatially varying spin textures may influence electron transport in the presence of correlations remains unclear. Here we demonstrate a very large topological Hall effect (THE) in thin films of a lightly electron-doped charge-transfer insulator, (Ca,Ce)MnO3. Magnetic force microscopy reveals the presence of magnetic bubbles, whose density as a function of magnetic field peaks near the THE maximum. The THE critically depends on carrier concentration and diverges at low doping, near the metal–insulator transition. We discuss the strong amplification of the THE by correlation effects and give perspectives for its non-volatile control by electric fields.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

  2. 2.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  3. 3.

    Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

  4. 4.

    Malozemoff, A. P. & Slonczewski, J. C. Magnetic Domain Walls in Bubble Materials. Magnetic Domain Walls in Bubble Materials (Academic, Cambridge, 1979).

  5. 5.

    Yu, X., Tokunaga, Y., Taguchi, Y. & Tokura, Y. Variation of topology in magnetic bubbles in a colossal magnetoresistive manganite. Adv. Mater. 29, 1603958 (2017).

  6. 6.

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

  7. 7.

    Bruno, P., Dugaev, V. K. & Taillefumier, M. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).

  8. 8.

    Nagai, T. et al. Formation of nanoscale magnetic bubbles in ferromagnetic insulating manganite La7/8Sr1/8MnO3. Appl. Phys. Lett. 101, 162401 (2012).

  9. 9.

    Nagao, M. et al. Direct observation and dynamics of spontaneous skyrmion-like magnetic domains in a ferromagnet. Nat. Nanotech. 8, 325–328 (2013).

  10. 10.

    Bocquet, A. E. et al. Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra. Phys. Rev. B 53, 1161–1170 (1996).

  11. 11.

    Bousquet, E. & Spaldin, N. Induced magnetoelectric response in Pnma perovskites. Phys. Rev. Lett. 107, 197603 (2011).

  12. 12.

    Zeng, Z., Greenblatt, M. & Croft, M. Charge ordering and magnetoresistance of Ca1–xCexMnO3. Phys. Rev. B 63, 224410 (2001).

  13. 13.

    Xiang, P.-H., Yamada, H., Akoh, H. & Sawa, A. Phase diagrams of strained Ca1–xCexMnO3 films. J. Appl. Phys. 112, 113703 (2012).

  14. 14.

    Marinova, M. et al. Depth profiling charge accumulation from a ferroelectric into a doped Mott insulator. Nano. Lett. 15, 2533–2541 (2015).

  15. 15.

    Caspi, E. N. et al. Structural and magnetic phase diagram of the two-electron-doped (Ca1–xCex)MnO3 system: effects of competition among charge, orbital, and spin ordering. Phys. Rev. B 69, 104402 (2004).

  16. 16.

    Neubauer, A. et al. Topological Hall effect in the α phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

  17. 17.

    Huang, S. X. & Chien, C. L. Extended Skyrmion phase in epitaxial FeGe(111) thin films. Phys. Rev. Lett. 108, 267201 (2012).

  18. 18.

    Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).

  19. 19.

    Bibes, M. et al. Anisotropic magnetoresistance and anomalous Hall effect in manganite thin films. J. Phys. Condens. Matter. 17, 2733–2740 (2005).

  20. 20.

    Matl, P. et al. Hall effect of the colossal magnetoresistance manganite La1–xCaxMnO3. Phys. Rev. B 57, 10248–10251 (1998).

  21. 21.

    Jakob, G., Martin, F., Westerburg, W. & Adrian, H. Evidence of charge-carrier compensation effects in La0.67Ca0.33MnO3. Phys. Rev. B 57, 10252–10255 (1998).

  22. 22.

    Ye, J. et al. Berry phase theory of the anomalous Hall effect: application to colossal magnetoresistance manganites. Phys. Rev. Lett. 83, 3737–3740 (1999).

  23. 23.

    Calderón, M. J. & Brey, L. Skyrmion strings contribution to the anomalous Hall effect in double-exchange systems. Phys. Rev. B 63, 54421 (2001).

  24. 24.

    Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

  25. 25.

    Nakamura, M. et al. Emergence of topological Hall effect in half-metallic manganite thin films by tuning perpendicular magnetic anisotropy. J. Phys. Soc. Jpn 87, 074704 (2018).

  26. 26.

    Onoda, M., Tatara, G. & Nagaosa, N. Anomalous Hall effect and skyrmion number in real and momentum spaces. J. Phys. Soc. Jpn 73, 2624–2627 (2004).

  27. 27.

    Nakazawa, K., Bibes, M. & Kohno, H. Topological Hall effect from strong to weak coupling. J. Phys. Soc. Jpn 87, 033705 (2018).

  28. 28.

    Brinkman, W. F. & Rice, T. M. Application of Gutzwiller’s variational method to the metal–insulator transition. Phys. Rev. B 2, 4302–4304 (1970).

  29. 29.

    Dobrosavljevic, V., Trived, N. & Valles, J. M. Conductor–Insulator Quantum Phase Transitions (Oxford Univ. Press, Oxford, 2012).

  30. 30.

    Fujishima, Y., Tokura, Y., Arima, T. & Uchida, S. Optical-conductivity spectra of Sr1–xLaxTiO3: filling-dependent effect of the electron correlation. Phys. Rev. B 46, 11167–11170 (1992).

  31. 31.

    Sakai, H. et al. Electron doping in the cubic perovskite SrMnO3: isotropic metal versus chainlike ordering of Jahn–Teller polarons. Phys. Rev. B 82, 180409 (2010).

  32. 32.

    Zhang, J., McIlroy, D. N. & Dowben, P. A. Correlation between screening and electron effective mass across the nonmetal-metal transition in ultrathin films. Phys. Rev. B 52, 11380–11386 (1995).

  33. 33.

    Matsuno, J. et al. Interface-driven topological Hall effect in SrRuO3–SrIrO3 bilayer. Sci. Adv. 2, e1600304 (2016).

  34. 34.

    Yamada, H. et al. Ferroelectric control of a Mott insulator. Sci. Rep. 3, 2834 (2013).

  35. 35.

    Shiomi, Y., Iguchi, S. & Tokura, Y. Emergence of topological Hall effect from fanlike spin structure as modified by Dzyaloshinsky–Moriya interaction in MnP. Phys. Rev. B 86, 180404 (2012).

  36. 36.

    Kanazawa, N. et al. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

  37. 37.

    Porter, N. A. et al. Giant topological Hall effect in strained Fe0.7Co0.3Si epilayers. Preprint at https://arxiv.org/abs/1312.1722 (2013).

  38. 38.

    Ohuchi, Y. et al. Topological Hall effect in thin films of the Heisenberg ferromagnet EuO. Phys. Rev. B 91, 245115 (2015).

  39. 39.

    Wang, W. et al. Visualizing weak ferromagnetic domains in multiferroic hexagonal ferrite thin film. Phys. Rev. B 95, 134443 (2017).

  40. 40.

    Rugar, D. et al. Magnetic force microscopy: general principles and application to longitudinal recording media. J. Appl. Phys. 68, 1169–1183 (1990).

Download references


The authors thank V. Cros, V. Dobrosavljevic, J. Iñiguez, J.-V. Kim, D. Maccariello, J. Matsuno, I. Mertig, N. Nagaosa and N. Reyren for useful discussions, J.-Y. Chauleau and M. Viret for second harmonic generation experiments, N. Jaouen for resonant magnetic X-ray diffraction, J. Varignon for preparing Fig. 1a and J.-M. George for his help with some magnetotransport measurements. This research received financial support from the ERC Consolidator grant ‘MINT’ (contract no. 615759) and ANR project ‘FERROMON’. This work was also supported by a public grant overseen by the ANR as part of the ‘Investissement d’Avenir’ programme (LABEX NanoSaclay, ref. ANR-10-LABX-0035) through projects ‘FERROMOTT’ and ‘AXION’ and by the Spanish Government through project no. MAT2014-56063-C2-1-R and MAT2017-85232-R (AEI/FEDER, UE), and Severo Ochoa SEV-2015-0496 and the Generalitat de Catalunya (2014SGR 734 project). B.C. acknowledges grant no. FPI BES-2012-059023, R.C. acknowledges support from CNPq-Brazil, and J.S. thanks the University Paris-Saclay (D’Alembert programme) and CNRS for financing his stay at CNRS/Thales. Work at Rutgers was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy under award no. DE-SC0018153. H.K. is supported by JSPS KAKENHI grants nos. 25400339, 15H05702 and 17H02929. K.N. is supported by a Grant-in-Aid for JSPS Research Fellow grant no. 16J05516, and by a Program for Leading Graduate Schools ‘Integrative Graduate Education and Research in Green Natural Sciences’.

Author information

Author notes

  1. These authors contributed equally: Anke Sander and Qiuxiang Zhu.


  1. Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France

    • Lorenzo Vistoli
    • , Anke Sander
    • , Qiuxiang Zhu
    • , Agnès Barthélémy
    • , Stéphane Fusil
    • , Vincent Garcia
    •  & Manuel Bibes
  2. Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA

    • Wenbo Wang
    •  & Weida Wu
  3. Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Catalonia, Spain

    • Blai Casals
    • , Rafael Cichelero
    •  & Gervasi Herranz
  4. Université d’Evry, Université Paris-Saclay, Evry, France

    • Stéphane Fusil
  5. Helmholtz-Zentrum Berlin für Materialen & Energie, Berlin, Germany

    • Sergio Valencia
    • , Radu Abrudan
    •  & Eugen Weschke
  6. Department of Earth and Space Science, Graduate School of Science, Osaka University, Osaka, Japan

    • Kazuki Nakazawa
  7. Department of Physics, Nagoya University, Nagoya, Japan

    • Kazuki Nakazawa
    •  & Hiroshi Kohno
  8. GFMC, Dpto. Física de Materiales, Universidad Complutense de Madrid, Madrid, Spain

    • Jacobo Santamaria


  1. Search for Lorenzo Vistoli in:

  2. Search for Wenbo Wang in:

  3. Search for Anke Sander in:

  4. Search for Qiuxiang Zhu in:

  5. Search for Blai Casals in:

  6. Search for Rafael Cichelero in:

  7. Search for Agnès Barthélémy in:

  8. Search for Stéphane Fusil in:

  9. Search for Gervasi Herranz in:

  10. Search for Sergio Valencia in:

  11. Search for Radu Abrudan in:

  12. Search for Eugen Weschke in:

  13. Search for Kazuki Nakazawa in:

  14. Search for Hiroshi Kohno in:

  15. Search for Jacobo Santamaria in:

  16. Search for Weida Wu in:

  17. Search for Vincent Garcia in:

  18. Search for Manuel Bibes in:


M.B. proposed the study and supervised it with V.G. L.V., A.S. and Q.Z. prepared the samples and performed X-ray diffraction and atomic force microscopy. L.V. and A.S. performed the magnetic characterization and magnetotransport experiments, and analysed the data with M.B. and V.G. B.C., G.H. and R.C. performed the magneto-optical Kerr effect measurement experiments. W.Wa. and W.Wu. performed the MFM experiments and analysed them with V.G. and S.F. S.V., R.A. and E.W. performed X-ray absorption spectroscopy experiments. K.N. and H.K. developed the theoretical model, with inputs from J.S., A.B. and M.B. M.B. wrote the manuscript. All authors discussed the data and contributed to the manuscript.

Corresponding author

Correspondence to Manuel Bibes.

Supplementary information

  1. Supplementary information.

    Supplementary Figures 1–8; Supplementary References 1–13

About this article

Publication history





Issue Date