Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Many-body localization and quantum thermalization

Abstract

It is the common wisdom that time evolution of a many-body system leads to thermalization and washes away quantum correlations. But one class of system—referred to as many-body localized—defy this expectation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic phase diagram of a model with a bounded many-body spectrum (for example, lattice fermions or spins).
Fig. 2: Experimental observation of MBL in an ultracold atomic system.
Fig. 3: Subdiffusive transport in the thermal state near the MBL transition.

References

  1. 1.

    Altman, E. & Vosk, R. Universal dynamics and renormalization in many-body-localized systems. Annu. Rev. Condens. Matter Phys. 6, 383–409 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    ADS  Article  Google Scholar 

  3. 3.

    Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Ergodicity, entanglement and many-body localization. Preprint at https://arxiv.org/abs/1804.11065 (2018).

  4. 4.

    Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    ADS  Article  Google Scholar 

  5. 5.

    Basko, D., Aleiner, I. & Altshuler, B. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    Gornyi, I. V., Mirlin, A. D. & Polyakov, D. G. Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95, 206603 (2005).

    ADS  Article  Google Scholar 

  7. 7.

    Imbrie, J. Z. On many-body localization for quantum spin chains. J. Stat. Phys. 163, 998–1048 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    De Roeck, W., Huveneers, F., Müller, M. & Schiulaz, M. Absence of many-body mobility edges. Phys. Rev. B 93, 014203 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    De Roeck, W. & Huveneers, F. Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).

    ADS  Article  Google Scholar 

  11. 11.

    Pal, A. & Huse, D. A. Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010).

    ADS  Article  Google Scholar 

  12. 12.

    Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).

    Article  Google Scholar 

  14. 14.

    Ovadia, M. et al. Evidence for a finite-temperature insulator. Sci. Rep. 5, 13503 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Žnidarič, M., Prosen, T. & Prelovšek, P. Many-body localization in the Heisenberg XXZ magnet in a random field. Phys. Rev. B 77, 064426 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Bardarson, J. H., Pollmann, F. & Moore, J. E. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Lukin, A. et al. Probing entanglement in a many-body-localized system. Preprint at https://arxiv.org/abs/1805.09819 (2018).

  18. 18.

    Serbyn, M., Papić, Z. & Abanin, D. A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Vosk, R. & Altman, E. Many-body localization in one dimension as a dynamical renormalization group fixed point. Phys. Rev. Lett. 110, 067204 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Pekker, D. et al. Hilbert-glass transition: new universality of temperature-tuned many-body dynamical quantum criticality. Phys. Rev. X 4, 011052 (2014).

    Google Scholar 

  22. 22.

    Bahri, Y., Vosk, R., Altman, E. & Vishwanath, A. Localization and topology protected quantum coherence at the edge of hot matter. Nat. Commun. 6, 7341 (2015).

    Article  Google Scholar 

  23. 23.

    Serbyn, M. et al. Interferometric probes of many-body localization. Phys. Rev. Lett. 113, 147204 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Bauer, B. & Nayak, C. Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech. Theory Exp. 2013, P09005 (2013).

    MathSciNet  Article  Google Scholar 

  25. 25.

    Huse, D. A., Nandkishore, R., Oganesyan, V., Pal, A. & Sondhi, S. L. Localization-protected quantum order. Phys. Rev. B 88, 014206 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Ponte, P., Papić, Z., Huveneers, F. & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Lazarides, A., Das, A. & Moessner, R. Fate of many-body localization under periodic driving. Phys. Rev. Lett. 115, 030402 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Abanin, D. A., Roeck, W. D. & Huveneers, F. Theory of many-body localization in periodically driven systems. Ann. Phys. 372, 1–11 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Else, D. V. & Nayak, C. Classification of topological phases in periodically driven interacting systems. Phys. Rev. B 93, 201103 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Watanabe, H. & Oshikawa, M. Absence of quantum time crystals. Phys. Rev. Lett. 114, 251603 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Zhang, J. et al. Nature 543, 217–220 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Vosk, R., Huse, D. A. & Altman, E. Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X 5, 031032 (2015).

    Google Scholar 

  34. 34.

    Potter, A. C., Vasseur, R. & Parameswaran, S. A. Universal properties of many-body delocalization transitions. Phys. Rev. X 5, 031033 (2015).

    Google Scholar 

  35. 35.

    Bar Lev, Y., Cohen, G. & Reichman, D. R. Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice. Phys. Rev. Lett. 114, 100601 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Agarwal, K., Gopalakrishnan, S., Knap, M., Müller, M. & Demler, E. Anomalous diffusion and Griffiths effects near the many-body localization transition. Phys. Rev. Lett. 114, 160401 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Žnidarič, M., Scardicchio, A. & Varma, V. K. Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system. Phys. Rev. Lett. 117, 040601 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Khemani, V., Lim, S. P., Sheng, D. N. & Huse, D. A. Critical properties of the many-body localization transition. Phys. Rev. X 7, 021013 (2017).

    Google Scholar 

  39. 39.

    Zhang, S.-X. & Yao, H. Universal properties of many-body localization transitions in quasiperiodic systems. Preprint at https://arxiv.org/abs/1805.05958 (2018).

  40. 40.

    Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).

    MathSciNet  Article  Google Scholar 

  41. 41.

    Leviatan, E., Pollmann, F., Bardarson, J. H., Huse, D. A. & Altman, E. Quantum thermalization dynamics with matrix-product states. Preprint at https://arxiv.org/abs/1702.08894 (2017).

  42. 42.

    White, C. D., Zaletel, M., Mong, R. S. K. & Refael, G. Quantum dynamics of thermalizing systems. Phys. Rev. B 97, 035127 (2018).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ehud Altman.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Altman, E. Many-body localization and quantum thermalization. Nature Phys 14, 979–983 (2018). https://doi.org/10.1038/s41567-018-0305-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing