Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Does gravity come from quantum information?

Abstract

Reconciling quantum mechanics with gravity has long posed a challenge for physicists. Recent developments have seen concepts originally developed in quantum information theory, such as entanglement and quantum error correction, come to play a fundamental role in understanding quantum gravity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of holographic duality and RT formula.
Fig. 2: Analogy between accessing bulk qubit from the boundary and quantum error correction.
Fig. 3: Tensor network state and the encoded bulk qubit.
Fig. 4: The relation between entanglement, bulk geometry and energy–momentum of the boundary.
Fig. 5: The scattering between two particles, a and b, near the black hole horizon.

Similar content being viewed by others

References

  1. Bekenstein, J. D. Black holes and the second law. Lett. Nuovo Cim. 4, 737–740 (1972).

    Article  ADS  Google Scholar 

  2. Bekenstein, J. D. Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  3. Hawking, S. W. Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971).

    Article  ADS  Google Scholar 

  4. Hawking, S. W. Black hole explosions? Nature 248, 30–31 (1974).

    Article  ADS  Google Scholar 

  5. Susskind, L. The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  6. Bousso, R. The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  7. ’t Hooft, G. Dimensional reduction in quantum gravity. Preprint at https://arxiv.org/abs/gr-qc/9310026 (1993).

  8. Maldacena, J. The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999).

    Article  MathSciNet  Google Scholar 

  9. Witten, E. Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  10. Gubser, S. S., Klebanov, I. R. & Polyakov, A. M. Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  11. Ryu, S. & Takayanagi, T. Holographic derivation of entanglement entropy from the anti–de Sitter space/conformal field theory correspondence. Phys. Rev. Lett. 96, 181602 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  12. Hubeny, V. E., Rangamani, M. & Takayanagi, T. A covariant holographic entanglement entropy proposal. J. High Energy Phys. 2007, 062 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  13. Faulkner, T., Lewkowycz, A. & Maldacena, J. Quantum corrections to holographic entanglement entropy. J. High Energy Phys. 2013, 074 (2013).

    Article  Google Scholar 

  14. Van Raamsdonk, M. Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 42, 2323–2329 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  15. Maldacena, J. & Susskind, L. Cool horizons for entangled black holes. Fortschr. Phys. 61, 781–811 (2013).

    Article  MathSciNet  Google Scholar 

  16. Hayden, P., Headrick, M. & Maloney, A. Holographic mutual information is monogamous. Phys. Rev. D 87, 046003 (2013).

    Article  ADS  Google Scholar 

  17. Almheiri, A., Dong, X. & Harlow, D. Bulk locality and quantum error correction in AdS/CFT. J. High Energy Phys. 2015, 163 (2015).

    Article  MathSciNet  Google Scholar 

  18. Hubeny, V. E. & Rangamani, M. Causal holographic information. J. High Energy Phys. 2012, 114 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  19. Headrick, M., Hubeny, V. E., Lawrence, A. & Rangamani, M. Causality & holographic entanglement entropy. J. High Energy Phys. 2014, 162 (2014).

    Article  ADS  Google Scholar 

  20. Harlow, D. The Ryu–Takayanagi formula from quantum error correction. Commun. Math. Phys. 354, 865–912 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. Swingle, B. Entanglement renormalization and holography. Phys. Rev. D 86, 065007 (2012).

    Article  ADS  Google Scholar 

  22. White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).

    Article  ADS  Google Scholar 

  23. Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).

    Article  ADS  Google Scholar 

  24. Vidal, G. Class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101, 110501 (2008).

    Article  ADS  Google Scholar 

  25. DiVincenzo, D. P. et al. in Quantum Computing and Quantum Communications (ed. Williams, C. P.) 247–257 (Springer, Berlin, 1999).

  26. Pastawski, F., Yoshida, B., Harlow, D. & Preskill, J. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energy Phys. 2015, 149 (2015).

    Article  MathSciNet  Google Scholar 

  27. Yang, Z., Hayden, P. & Qi, X.-L. Bidirectional holographic codes and sub-AdS locality. J. High Energy Phys. 2016, 175 (2016).

    Article  MathSciNet  Google Scholar 

  28. Hayden, P. et al. Holographic duality from random tensor networks. J. High Energy Phys. 2016, 9 (2016).

    Article  MathSciNet  Google Scholar 

  29. Page, D. N. Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  30. Strominger, A. The dS/CFT correspondence. J. High Energy Phys. 2001, 034 (2001).

    Article  MathSciNet  Google Scholar 

  31. Nomura, Y., Salzetta, N., Sanches, F. & Weinberg, S. J. Toward a holographic theory for general spacetimes. Phys. Rev. D 95, 086002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  32. Verlinde, E. Emergent gravity and the dark universe. SciPost Phys. 2, 016 (2017).

    Article  Google Scholar 

  33. Han, M. & Huang, S. Discrete gravity on random tensor network and holographic Rényi entropy. J. High Energy Phys. 2017, 148 (2017).

    Article  ADS  Google Scholar 

  34. Lashkari, N., McDermott, M. B. & Van Raamsdonk, M. Gravitational dynamics from entanglement “thermodynamics”. J. High Energy Phys. 2014, 195 (2014).

    Article  Google Scholar 

  35. Swingle, B. & Van Raamsdonk, M. Universality of gravity from entanglement. Preprint at https://arxiv.org/abs/1405.2933 (2014).

  36. Shenker, S. H. & Stanford, D. Black holes and the butterfly effect. J. High Energy Phys. 2014, 67 (2014).

    Article  MathSciNet  Google Scholar 

  37. Larkin, A. & Ovchinnikov, Y. N. Quasiclassical method in the theory of superconductivity. J. Exp. Theor. Phys. 28, 1200–1205 (1969).

    ADS  Google Scholar 

  38. Shenker, S. H. & Stanford, D. Stringy effects in scrambling. J. High Energy Phys. 2015, 132 (2015).

    Article  MathSciNet  Google Scholar 

  39. Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).

    Article  MathSciNet  Google Scholar 

  40. Sachdev, S. & Ye, J. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).

    Article  ADS  Google Scholar 

  41. Kitaev, A. A simple model of quantum holography. KITP http://online.kitp.ucsb.edu/online/entangled15/kitaev/; http://online.kitp.ucsb.edu/online/entangled15/kitaev2/ (2015).

  42. Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94, 106002 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  43. Almheiri, A., Marolf, D., Polchinski, J. & Sully, J. Black holes: complementarity or firewalls? J. High Energy Phys. 2013, 62 (2013).

    Article  MathSciNet  Google Scholar 

  44. Stanford, D. & Susskind, L. Complexity and shock wave geometries. Phys. Rev. D 90, 126007 (2014).

    Article  ADS  Google Scholar 

  45. Brown, A. R., Roberts, D. A., Susskind, L., Swingle, B. & Zhao, Y. Holographic complexity equals bulk action? Phys. Rev. Lett. 116, 191301 (2016).

    Article  ADS  Google Scholar 

  46. Susskind, L. Dear Qubitzers, GR=QM. Preprint at https://arxiv.org/abs/1708.03040 (2017).

Download references

Acknowledgements

This work is supported by the National Science Foundation under grant no. 1720504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Liang Qi.

Additional information

Additional information

Reprints and permissions information is available at www.nature.com/reprints. Correspondence should be addressed to X.-L.Q.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, XL. Does gravity come from quantum information?. Nature Phys 14, 984–987 (2018). https://doi.org/10.1038/s41567-018-0297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0297-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing